【题目】(2016湖北省荆州市第23题)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.
(1)求证:CD是半圆O的切线;
(2)若DH=6﹣3,求EF和半径OA的长.
【答案】(1)、证明过程见解析;(2)、EF=2-;OA=2.
【解析】
试题分析:(1)、连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)、根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.
试题解析:(1)、连接OB, ∵OA=OB=OC, ∵四边形OABC是平行四边形, ∴AB=OC,
∴△AOB是等边三角形, ∴∠AOB=60°, ∵∠FAD=15°, ∴∠BOF=30°, ∴∠AOF=∠BOF=30°,
∴OF⊥AB, ∵CD∥OF, ∴CD⊥AD, ∵AD∥OC, ∴OC⊥CD, ∴CD是半圆O的切线;
(2)、∵BC∥OA, ∴∠DBC=∠EAO=60°, ∴BD=BC=AB, ∴AE=AD, ∵EF∥DH,∴△AEF∽△ADH,
∴, ∵DH=6﹣3, ∴EF=2﹣, ∵OF=OA, ∴OE=OA﹣(2﹣),
∵∠AOE=30°, ∴==, 解得:OA=2.
科目:初中数学 来源: 题型:
【题目】在给定的条件中,能作出平行四边形的是( )
A.以60cm为对角线,20cm、34cm为两条邻边
B.以20cm、36cm为对角线,22cm为一条边
C.以6cm为一条对角线,3cm、10cm为两条邻边
D.以6cm、10cm为对角线,8cm为一条边
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016广东省梅州市第20题)
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:数轴上A、B两点表示的有理数分别为a、b,且(a﹣1)2+|b+2|=0
(1)求(a+b)2017的值.
(2)数轴上的点C与A、B两点的距离的和为7,求点C在数轴上表示的数c的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com