【题目】我们知道,对于任何实数x
①∵ ∴
②∵ ∴
模仿上述方法
求证:
(1)对于任何实数x,均有
(2)不论x为何实数,单项式的值总大于的值.
【答案】(1)详见解析;(2)详见解析
【解析】
(1)将代数式前两项提取2,配方后根据完全平方式为非负数,得到代数式大于等于1,即对于任何实数x,代数式2x2+4x+3的值总大于0,得证;
(2)证明多项式3x2-5x-1的值总大于2x2-4x-2的值时,可以证明3x2-5x-1-(2x2-4x-2)>0即可.
证明:(1)∵对于任何实数x,(x+1)20,
∴2x2+4x+3
=2(x2+2x)+3
=2(x2+2x+1)+1
=2(x+1)2+11>0.即2x2+4x+3>0
(2)∵3x25x1(2x24x2)
=3x25x12x2+4x+2
=x2x+1
=(x)2+>0,
∴多项式3x25x1的值总大于2x24x2的值.
科目:初中数学 来源: 题型:
【题目】2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.
小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:
(1)n =________,小明调查了_____户居民,并补全图1;
(2)每月每户用水量的中位数落在______之间,众数落在_______之间;
(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的长;
(2)求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为一桥洞的形状,其正视图是由圆弧和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F)EF为2米.
(1)求所在⊙O的半径DO;
(2)若河里行驶来一艘正视图为矩形的船,其宽6米,露出水面AB的高度为h米,求船能通过桥洞时的最大高度h.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.
(1)求证:AE=CF;
(2)若∠ABE=55°,求∠EGC的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某校新初三暑期阅读课外书的情况,某研究小组随机采访该校新九年级的20位同学,得到这20位同学暑期读课外书册数的统计如下:
册数 | 0 | 2 | 3 | 5 | 6 | 8 | 10 |
人数 | 1 | 2 | 4 | 8 | 2 | 2 | 1 |
(1)这20位同学暑期看课外书册数的中位数是 册,众数是 册,平均数是 册。
(2)若小明同学把册数中的数据“8”看成了“7”,那么中位数,众数,平均数中不受影响的是。
(3)若该校有600名新初三学生,试估计该校新初三学生暑期阅读课外书的总册数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.
(1)求证:DE∥BC;
(2)若AF=CE,求线段BC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com