精英家教网 > 初中数学 > 题目详情
如图所示,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠ACB的度数是(  )
A、70°B、40°
C、50°D、20°
考点:切线的性质,圆周角定理
专题:计算题
分析:连接BC,OB,由PA、PB是⊙O的切线,可得∠OAP=∠OBP=90°,根据四边形内角和,求出∠AOB,再根据圆周角定理即可求∠ACB的度数.
解答:解:连接BC,OB,
AC是直径,则∠ABC=90°,
PA、PB是⊙O的切线,A、B为切点,则∠OAP=∠OBP=90°,
∴∠AOB=180°-∠P=140°,
由圆周角定理知,∠ACB=
1
2
∠AOB=70°,
故选A.
点评:解决本题的关键是连接BC、OB,利用直径对的圆周角是直角,切线的性质,圆周角定理解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,是一个被分成6等份的扇形转盘,小明转了2次结果指针都停留在红色区域,小明第3次再转动指针停留在红色区域的概率是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

判断一个命题是假命题,下列说法正确的是(  )
A、要经过严格的推理论证
B、只要举一个符合题设,不满足结论的反例
C、只要举一个既不符合题设,又不满足结论的反例
D、要举若干个反例

查看答案和解析>>

科目:初中数学 来源: 题型:

点(-4,3)关于x轴对称的点坐标是(  )
A、(-4,-3)
B、(4,3)
C、(4,-3)
D、(3,-4)

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,A(2,-3)与点B关于原点对称,则点B的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,C、D是⊙O上两点,CD⊥AB,若∠DAB=65°,则∠AOC等于(  )
A、25°B、30°
C、50°D、65°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠A=80°,∠ABC与∠ACD的平分线交于点E,∠EBC与∠ECD的平分线相交于点F,则∠BFC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在进行二次根式化简时,我们有时会碰上如
5
3
, 
2
3
 , 
2
3
+1
一样的式子,其实我们还可以将其进一步化简:
5
3
=
3
3
×
3
=
5
3
3
 ,
2
3
=
2×3
3×3
=
6
3
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)
2
-12
=
3
-1

以上这种化简的方法叫做分母有理化.
2
3
+1
还可以用以下方法化简:
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1

(1)用不同的方式化简
3
10
+
7

(2)化简:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+
1
2n+1
+
2n-1

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=-2x2-6x+1的对称轴是(  )
A、-3
B、x=-3
C、x=
3
2
D、x=-
3
2

查看答案和解析>>

同步练习册答案