精英家教网 > 初中数学 > 题目详情

【题目】如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.

(1)试判断BE与FH的数量关系,并说明理由;

(2)求证:∠ACF=90°;

(3)连接AF,过A、E、F三点作圆,如图2,若EC=4,∠CEF=15°,求的长.

【答案】(1)BE=FH;(2)证明见解析(3)2π

【解析】

试题分析:(1)利用ABE≌△EHF求证BE=FH,

(2)由BE=FH,AB=EH,推出CH=FH,得到∠HCF=45°,由四边形ABCD是正方形,所以∠ACB=45°,得出∠ACF=90°,

(3)作CP⊥EF于P,利用相似三角形△CPE∽△FHE,求出EF,利用公式求出的长.

试题解析:(1)BE=FH.

证明:∵∠AEF=90°,∠ABC=90°,

∴∠HEF+∠AEB=90°,∠BAE+∠AEB=90°,

∴∠HEF=∠BAE,

在△ABE和△EHF中,

∴△ABE≌△EHF(AAS)

∴BE=FH.

(2)由(1)得BE=FH,AB=EH,

∵BC=AB,

∴BE=CH,

∴CH=FH,

∴∠HCF=45°,

∵四边形ABCD是正方形,

∴∠ACB=45°,

∴∠ACF=180°﹣∠HCF﹣∠ACB=90°.

(3)由(2)知∠HCF=45°,∴CF=FH.

∠CME=∠HCF﹣∠CEF=45°﹣15°=30°.

如图2,过点C作CP⊥EF于P,则CP=CF=FH.

∵∠CEP=∠FEH,∠CPE=∠FHE=90°,

∴△CPE∽△FHE.

,即

∴EF=4

∵△AEF为等腰直角三角形,∴AF=8.

取AF中点O,连接OE,则OE=OA=4,∠AOE=90°,

的弧长为: =2π.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:-3+2=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5,需2100元,若购进A种树苗4,B种树苗10,需3800元.

(1)求购进A、B两种树苗的单价;

(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】6800000,用科学记数法表示为(  )

A. 6.8×105 B. 6.8×106 C. 6.8×107 D. 6.8×108

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一件商品按成本价提高40%后标价,再打8(标价的80%)销售,售价为240元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是(   )

A. 40%x·80%=240

B. (1+40%)x·80%=240

C. 240×40%×80%=x

D. 40%x=240×80%

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线与双曲线y=交于A、B两点,点B的坐标为(-4,-2),C为第一象限内双曲线y=上一点,且点C在直线的上方.

(1)求双曲线的函数解析式;

(2)若△AOC的面积为6,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种药品说明书上标明保存温度是(20±3)0C,则该药品在( )范围内保存最合适.

A. 170C~200C B. 200C ~230C C. 170C ~230C D. 170C ~240C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列等式变形不正确的是(

A. x=y,得到x+2=y+2

B. 2a﹣3=b﹣3,得到2a=b

C. m=n,得到2am=2an

D. am=an,得到m=n

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面的运算正确的是(  )

A. a+a2=a3 B. a2a3=a5 C. 6a﹣5a=1 D. a6÷a2=a3

查看答案和解析>>

同步练习册答案