精英家教网 > 初中数学 > 题目详情

【题目】如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.

(1)求点B的坐标;

(2)求经过点A.O、B的抛物线的解析式;

(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.

【答案】解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°。

∵∠AOB=120°,∴∠BOC=60°。

又∵OA=OB=4,

∴OC=OB=×4=2,BC=OBsin60°=

∴点B的坐标为(﹣2,﹣)。

(2)∵抛物线过原点O和点A.B,

∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2,﹣)代入,

,解得

∴此抛物线的解析式为

(3)存在。

如图,抛物线的对称轴是x=2,直线x=2与x轴的交点为D,

设点P的坐标为(2,y)。

①若OB=OP,则22+|y|2=42,解得y=±

当y=时,

在Rt△POD中,∠PDO=90°,sin∠POD=

∴∠POD=60°

∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三点在同一直线上。

∴y=不符合题意,舍去。

∴点P的坐标为(2,﹣)。

②若OB=PB,则42+|y+|2=42,解得y=﹣

∴点P的坐标为(2,﹣)。

③若OP=BP,则22+|y|2=42+|y+|2,解得y=﹣

∴点P的坐标为(2,﹣)。

综上所述,符合条件的点P只有一个,其坐标为(2,﹣)。

【解析】(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标。

(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式。

(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP三种情况分类讨论,然后分辨是否存在符合条件的P点。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABCRtADE,∠BAC=∠DAE=90°,ABDE相交于点F连接DBCE

(1)AFD的度数

(2)ADE=∠ABC求证ADBAEC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数x轴最多有一个交点现有以下三个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程无实数根;③≥0.其中,正确结论的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是正方形ABCD的边BC上的任意一点,连接AP,作DE⊥AP,垂足是E,BF⊥AP,垂足是F.求证:DE=BF+EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】24如图,P是弧AB所对弦AB上一动点,过点PPCAB交弧AB于点C,取AP中点D,连接CD.已知AB=6cm,设AP两点间的距离为xcmCD两点间的距离为ycm.(当点P与点A重合时,y的值为0;当点P与点B重合时,y的值为3)

小凡根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.

下面是小凡的探究过程,请补充完整:

(1)通过取点、画图、测量,得到了xy的几组值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

0

2.2

   

3.2

3.4

3.3

3

(2)建立平面直角坐标系,描出补全后的表中各对对应值为坐标的点,画出该函数的图象;

(3)结合所画出的函数图象,解决问题:当∠C=30°时,AP的长度约为   cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.

(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)

(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=﹣x+2的图象与反比例函数的图象交于点A(﹣1,m),B(n,﹣1).

(1)求反比例函数的解析式;

(2)y1y时,直接写出x的取值范围

(3)求△AOB的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.

(1)求yx之间的函数关系式;

(2)当每箱售价为多少元时,每星期的销售利润达到3570元?

(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.

(1)求甲、乙两种苹果的进价分别是每千克多少元?

(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.

查看答案和解析>>

同步练习册答案