【题目】为了解全校学生上学的交通方式,该校九年级(8)班的4名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式) 设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息, 解答下列问题:
(1)本次接受调查的总人数是 人, 并把条形统计图补充完整;
(2)在扇形统计图中,“步行”的人数所占的百分比是 ,“其他方式”所在扇形的圆心角度数是 ;
(3)已知这4名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法, 求出恰好选出1名男生和1名女生的概率.
【答案】(1)图见解析;300(2)29.3%;24(3)
【解析】
(1)根据上学方式为“骑自行车”的学生数除以所占的百分比即可求出调查的学生总数;根据总学生数求出上学方式为“步行”的学生数,补全条形统计图即可;
(2)由×100%可以求得在扇形统计图中 “步行”的人数所占的百分比;同理求得“其他方式”所占的百分比,进而求得“其他方式”所在扇形的圆心角度数;
(3)根据题意画出树状图,得出所有等情况数和恰好选出1名男生和1名女生的情况,再根据概率公式计算即可.
(1)本次接受调查的总人数是:54÷18%=300(人),
步行的人数有:300541261220=88(人),补图如下:
故答案为:300;
(2)在扇形统计图中,“步行”的人数所占的百分比是:×100%=29.3%;
“其他方式”所在扇形的圆心角度数是:360××100%=24.
故答案是:29.3%;24;
(3)根据题意列表如下:
得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种,
则P(一男一女)=.
科目:初中数学 来源: 题型:
【题目】如图1,在中, ,边的长为边的长为,在此三角形内有一个矩形;点分别在上,设的长为,矩形的面积为(单位: )
(1)当等于30时,求与的函数关系式:(不要求写出自变量的取值范围)
(2)在(1)的条件下,矩形的面积能否为?请说明理由?
(3)若与的函数图象如图2所示,求此时的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,
(1)求证:直线AB是⊙O的切线;
(2)OA,OB分别交⊙O于点D,E,AO的延长线交⊙O于点F,若AB=4AD,求sin∠CFE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是半圆弧上一动点,连接AP,作∠APC=45°,交弦AB于点C.AB=6cm.小元根据学习函数的经验,分别对线段AP,PC,AC的长度进行了测量.下面是小元的探究过程,请补充完整:
(1)下表是点P是上的不同位置,画图、测量,得到线段AP,PC,AC长度的几组值,如下表:
①经测量m的值是(保留一位小数).
②在AP,PC,AC的长度这三个量中,确定 的长度是自变量, 的长度和的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数图象;
(3)结合函数图象,解决问题:当△ACP为等腰三角形时,AP的长度约为 cm(保留一位小数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,直线y1=2x+4分别与x轴,y轴交于A,B两点,以线段OB为一条边向右侧作矩形OCDB,且点D在直线y2=﹣x+b上,若矩形OCDB的面积为20,直线y1=2x+4与直线y2=﹣x+b交于点P.则P的坐标为( )
A.(2,8)B.C.D.(4,12)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
如图1.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,可以得到:
证明:过点A作AD⊥BC,垂足为D.
在Rt△ABD中,
∴
∴
同理:
∴
(1)通过上述材料证明:
(2)运用(1)中的结论解决问题:
如图2,在中,,求AC的长度.
(3)如图3,为了开发公路旁的城市荒地,测量人员选择A、B、C三个测量点,在B点测得A在北偏东75°方向上,沿笔直公路向正东方向行驶18km到达C点,测得A在北偏西45°方向上,根据以上信息,求A、B、C三点围成的三角形的面积.
(本题参考数值:sin15°≈0.3,sin120°≈0.9,≈1.4,结果取整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.
(1)求∠CDE的度数;
(2)求证:DF是⊙O的切线;
(3)若AC=2DE,求tan∠ABD的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com