精英家教网 > 初中数学 > 题目详情

【题目】在正方形ABCD中,ECD边上的点,过点EEFBDF

(1)尺规作图:在图中求作点E,使得EF=EC(保留作图痕迹,不写作法)

(2)(1)的条件下,连接FC,求∠BCF的度数.

【答案】1)作图见解析;(2∠BCF=67.5°.

【解析】

1)作∠CBD的角平分线即可.

2)证明BFBC,利用等腰三角形的性质即可解决问题.

解:(1)如图,点E即为所求.

2)∵四边形ABCD是正方形,

∴∠BCD90°BCCD

∴∠DBC=∠CDB45°

EFBD

∴∠BFE90°

由(1)得EFECBEBE

RtBFERtBCEHL

BCBF

∴∠BCF=∠BFC

∴∠BCF(180°FBC)67.5°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在边长为的正方形中,点的靠近点的四等分点,点的中点, 沿着翻折得,连接,则点的距离为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点Ax1y1),Bx2y2),若x1x2+y1y20,且AB均不为原点,则称AB互为正交点.比如:A11),B2,﹣2),其中1×2+1×(﹣2)=0,那么AB互为正交点.

1)点PQ互为正交点,P的坐标为(﹣23),

如果Q的坐标为(6m),那么m的值为多少;

如果Q的坐标为(xy),求yx之间的关系式;

2)点MN互为正交点,直接写出∠MON的度数;

3)点CD是以(02)为圆心,半径为2的圆上的正交点,以线段CD为边,构造正方形CDEF,圆心F在正方形CDEF的外部,求线段OE长度的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在RtABC中,∠ACB=90°,ABC=30°,则:AC=AB.

探究结论:小明同学对以上结论作了进一步研究.

(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BECE之间的数量关系为  

(2)如图2,点D是边CB上任意一点,连接AD,作等边ADE,且点E在∠ACB的内部,连接BE.试探究线段BEDE之间的数量关系,写出你的猜想并加以证明.

(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BEDE之间存在怎样的数量关系?请直接写出你的结论  

拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点Bx轴正半轴上的一动点,以AB为边作等边ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABBC,以BC为直径作⊙OAC交⊙O于点E,过点EEGAB于点F,交CB的延长线于点G

1)求证:EG是⊙O的切线;

2)若GF2GB4,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储580亿本书籍,将580亿用科学记数法表示应为( ).

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线Gymx2+2mx+m1m0)与y轴交于点C,抛物线G的顶点为D,直线:ymx+m1m0).

1)当m1时,画出直线和抛物线G,并直接写出直线被抛物线G截得的线段长.

2)随着m取值的变化,判断点CD是否都在直线上并说明理由.

3)若直线被抛物线G截得的线段长不小于2,结合函数的图象,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数yaxaya≠0)在同一直角坐标系中的图象可能是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校组织了一次体育测试,测试项目有A立定跳远B掷实心球C仰卧起坐D“100米跑E“800米跑.规定:每名学生测试三项,其中AB为必测项目,第三项在CDE中随机抽取,每项10分(成绩均为整数且不低于0分).

1)完成AB必测项目后,用列表法,求甲、乙两同学第三项抽取不同项目的概率;

2)某班有6名男生抽到了E“800米跑项目,他们的成绩分别(单位:分)为:x67889

①已知这组成绩的平均数和中位数相等,且x不是这组成绩中最高的,则x=

②该班学生丙因病错过了测试,补测抽到了E“800米跑项目,加上丙同学的成绩后,发现这组成绩的众数与中位数相等,但平均数比原来的平均数小,则丙同学“800米跑的成绩为多少?;

查看答案和解析>>

同步练习册答案