【题目】如图1,△ABC为等腰直角三角形,∠ACB=90°,AC=BC,点D和E分别是AC、AB上的点,CE⊥BD,垂足为F
(1)
①求证:D为AC的中点;②计算的值.
(2)若,如图2,则= (直接写出结果,用k的代数式表示)
【答案】(1)①见解析;②;(2).
【解析】
(1)①先证明△CDF∽△BDC,再利用相似的性质即可解答
②过点A作直线BD的垂线,交BD延长线于G,则AG∥CF,得到,再利用勾股定理求出CF,BD,即可解答
(2)根据题意可知△CDF∽△BDC,再利用相似的性质求出=k﹣1,过点A作直线BD的垂线,交BD延长线于G,则AG∥CF,得到AG=(k﹣1)CF,GD=(k﹣1)FD,再根据勾股定理即可解答
(1)①证明:∵∠ACB=90°,CE⊥BD,
∴∠BCD=∠CFD=90°.
∴∠BCF=∠CDF(同角的余角相等).
∴△CDF∽△BDC.
∴.
∵,AC=BC,
∴.
∴D为AC的中点;
②如图1,过点A作直线BD的垂线,交BD延长线于G,则AG∥CF,
∴△ADG∽△CDF.
∴.
∴AG=CF,GD=FD.
在直角△CFD中,CF=2DF,CD2=DF2+CF2,易得CF= CD.
在直角△BCD中,BC=2CD,BD2=CD2+BC2,易得BD= CD.
由tan∠EBF=tan∠ABG知,.
∴.
(2)∵∠ACB=90°,CE⊥BD,
∴∠BCD=∠CFD=90°.
∴∠BCF=∠CDF(同角的余角相等).
∴△CDF∽△BDC.
∴.
∵,AC=BC,
∴.
∴=k﹣1;
如图2,过点A作直线BD的垂线,交BD延长线于G,则AG∥CF,
∴△ADG∽△CDF.
∴=k﹣1.
∴AG=(k﹣1)CF,GD=(k﹣1)FD.
在直角△CFD中,CF=kDF,CD2=DF2+CF2,易得CF= .
在直角△BCD中,BC=kCD,BD2=CD2+BC2,易得BD= CD.
由tan∠EBF=tan∠ABG知,.即.
∴.
故答案是:.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1), C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1 ,使点P(m,n)移到P(m+6,n+1)处.
(1)画出△A1B1C1
(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;
(3)在(2)的条件下求BC扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若关于x的方程(a+1)x2+(2a﹣3)x+a﹣2=0有两个不相等的实根,且关于x的方程的解为整数,则满足条件的所有整数a的和是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.在平面直角坐标系中.抛物线y=x2+bx+c与x轴交于A两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣2).已知点E(m,0)是线段AB上的动点(点E不与点A,B重合).过点E作PE⊥x轴交抛物线于点P.交BC于点F.
(1)求该抛物线的表达式;
(2)当线段EF,PF的长度比为1:2时,请求出m的值;
(3)是否存在这样的m,使得△BEP与△ABC相似?若存在,求出此时m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.
(1)求抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,则下列结论:
①abc>0
②a﹣b+c<0;
③2a+b+c>0;
④x(ax+b)≤a+b;
其中正确的有_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,为坐标原点,过二次函数图象上的点,作轴的垂线交轴于点.
(1)如图1,为线段上方抛物线上的一点,在轴上取点,点、为轴上的两个动点,点在点的上方且连接,当四边形的面积最大时,求的最小值.
(2)如图2,点在线段上,连接,将沿直线翻折,点的对应点为,将沿射线平移个单位得,在抛物线上取一点,使得以为顶点的三角形是等腰三角形,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2015随州)甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:
①出发1小时时,甲、乙在途中相遇;
②出发1.5小时时,乙比甲多行驶了60千米;
③出发3小时时,甲、乙同时到达终点;
④甲的速度是乙速度的一半.
其中,正确结论的个数是( )
A. 4B. 3C. 2D. 1
【答案】B
【解析】
试题此题主要考查了一次函数的应用,读函数的图象的关键是理解横、纵坐标表示的意义,根据题意并结合横纵坐标的意义得出辆摩托车的速度,然后再分别分析,即可得出答案.
解:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;
甲骑摩托车的速度为:120÷3=40(千米/小时),设乙开汽车的速度为a千米/小时,
则,
解得:a=80,
∴乙开汽车的速度为80千米/小时,
∴甲的速度是乙速度的一半,故④正确;
∴出发1.5小时,乙比甲多行驶了:1.5×(80﹣40)=60(千米),故②正确;
乙到达终点所用的时间为1.5小时,甲得到终点所用的时间为3小时,故③错误;
∴正确的有①②④,共3个,
故选:B.
考点:一次函数的应用.
【题型】单选题
【结束】
9
【题目】计算:______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com