【题目】如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.
(1)求抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.
【答案】(1);(2)(0,)或(0,4).
【解析】
试题(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;
(2)本题要分两种情况进行讨论:①PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;
②PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标.
试题解析:(1)∵抛物线经过点A(1,0),∴,∴;
(2)∵抛物线的解析式为,∴令,则,∴B点坐标(0,﹣4),AB=,
①当PB=AB时,PB=AB=,∴OP=PB﹣OB=.∴P(0,),
②当PA=AB时,P、B关于x轴对称,∴P(0,4),因此P点的坐标为(0,)或(0,4).
科目:初中数学 来源: 题型:
【题目】一辆汽车在公路上匀速行驶,看到里程表上是一个两位数,小时后其里程表还是一个两位数,且刚好它的十位数字与个位数字与第一次看到的两位数的十位数字与个位数字颠倒了位置,又过了小时后看到里程表是一个三位数,它是第一次看到的两位数中间加一个,则汽车的速度是________千米小时.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点 P 是∠AOB 内部一定点
(1)若∠AOB=50°,作点 P 关于 OA 的对称点 P1,作点 P 关于 OB 的对称点 P2,连 OP1、OP2,则∠P1OP2=___.
(2)若∠AOB=α,点 C、D 分别在射线 OA、OB 上移动,当△PCD 的周长最小时,则∠CPD=___(用 α 的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0)、B(2,0)两点,交y轴于点C(0,﹣2),过点A、C画直线.
(1)求二次函数的解析式;
(2)若点P在x轴正半轴上,且PA=PC,求OP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系中,A(0,﹣1)、B(﹣2,0)C(4,0)
(1)求△ABC的面积;
(2)在y轴上是否存在一个点D,使得△ABD为等腰三角形,若存在,求出点D坐标;若不存,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.若AE、CD为△ABC的角平分线.
(1)求证:∠AFC=120°;
(2)若AD=6,CE=4,求AC的长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】芷江二中为了解学生的体育锻炼情况,随机抽查了部分学生一周参加体育锻炼的时间,得到如图的条形统计图,根据图形解答下列问题:
这次抽查了多少名学生?
所抽查的学生一周平均参加体育锻炼多少小时?
已知该校有名学生,估计该校有多少名学生一周参加体有锻炼的时间超过小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图所示.
(1)图中点P所表示的实际意义是 ;销售单价每提高1元时,销售量相应减少 件;
(2)请直接写出y与x之间的函数表达式: ;自变量x的取值范围为 ;
(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若 二 次 函 数 y ax bx c 的 图 象 与 x 轴 交 于 A 和 B 两 点 , 顶 点 为 C , 且b 4ac 4 ,则 ACB 的度数为()
A. 120° B. 90° C. 60° D. 30°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com