【题目】如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c﹣9)2=0.
(1)a= ,c= ;
(2)如图所示,在(1)的条件下,若点A与点B之间的距离表示为AB=|a﹣b|,点B与点C之间的距离表示为BC=|b﹣c|,点B在点A、C之间,且满足BC=2AB,则b= ;
(3)在(1)(2)的条件下,若点P为数轴上一动点,其对应的数为x,当代数式|x﹣a|+|x﹣b|+|x﹣c|取得最小值时,此时x= ,最小值为 ;
(4)在(1)(2)的条件下,若在点B处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点C处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),请表示出甲、乙两小球之间的距离d(用t的代数式表示).
【答案】(1)a=﹣3,c=9;
(2)b=1;
(3)当x=b=1时,最小值为12;
(4)当t不超过4秒(或表述为0≤t≤4或4秒以前),d=12﹣t;
当t超过4秒(或表述为t>4或4秒以后),d=3t﹣4.
【解析】试题分析:(1)根据非负数的性质求得a=﹣3,c=9;(2)根据BC=2AB得|c﹣b|=2|b﹣a|,代入数据求b即可;(3)当P与点B重合时,即当x=b时,|x﹣a|+|x﹣b|+|x﹣c|取得最小值;(4)分当0<t≤4时,当t>4时,表示出甲、乙两小球之间的距离d即可.
试题解析:
(1)∵|a+3|+(c﹣9)2=0,
∴a+3=0,c﹣9=0,
解得,a=﹣3,c=9;
(2)数轴上点B表示的数为b.
∵BC=2AB,
∴|c﹣b|=2|b﹣a|,
即9﹣b=2[b﹣(﹣3)]
解得:b=1;
(3)当x=b=1时,
|x﹣a|+|x﹣b|+|x﹣c|=|x﹣(﹣3)|+|x﹣1|+|x﹣9|=12,为最小值;
(4)当t不超过4秒(或表述为0≤t≤4或4秒以前),d=12﹣t;
当t超过4秒(或表述为t>4或4秒以后),d=3t﹣4.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx-2与x轴交于A、B两点, 与y轴交于C点,且A(一1,0).
⑴求抛物线的解析式及顶点D的坐标;
⑵判断△ABC的形状,证明你的结论;
⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在课外学习时遇到这样一个问题:
定义:如果二次函数与满足,,,则称这两个函数互为“旋转函数”.
求函数的“旋转函数”.
小明是这样思考的:由函数可知,,,,根据,,,求出,,,就能确定这个函数的“旋转函数”.
请参考小明的方法解决下面问题:
(1)直接写出函数的“旋转函数”;
(2)若函数与互为“旋转函数”,求的值;
(3)已知函数的图象与轴交于点A、B两点(A在B的左边),与轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数互为“旋转函数”。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.
(1)判断△ABC的形状: ;
(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某餐厅中,一张桌子可坐6人,有如图所示的两种摆放方式:
(1)当有n张桌子时,两种摆放方式各能坐多少人?
(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌.若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数(是常数).
(1)、求证:不论为何值,该函数的图象与x轴没有公共点;
(2)、把该函数的图象沿轴向下平移多少个单位长度后,得到的函数的图象与轴只有一个公共点?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com