【题目】已知二次函数(为常数),在自变量的值满足的情况下,与其对应的函数值的最小值为6,则的值为( )
A.或5B.1或C.1或D.1或3
【答案】A
【解析】
由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x<h时,y随x的增大而减小;根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.
∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,
∴①若h<1≤x≤3,x=1时,y取得最小值5,
可得:(1h)2+1=5,
解得:h=1或h=3(舍);
②若1≤x≤3<h,当x=3时,y取得最小值5,
可得:(3h)2+1=5,
解得:h=5或h=1(舍);
③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,
∴此种情况不符合题意,舍去.
综上,h的值为1或5,
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图1,以△ABC的边AB为直径作⊙O,交AC于点E,BD平分∠ABE交AC于F,交圆O于点D,且∠BDE=∠CBE.
(1)求证:BC是⊙O的切线;
(2)如图2,延长ED交直线AB于点P,若 PA=AO,DE=2,求的值及AO的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从A、B两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.
(1)求甲、乙两车行驶的速度V甲、V乙.
(2)求m的值.
(3)若甲车没有故障停车,求可以提前多长时间两车相遇.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.
(1)求反比例函数的解析式.
(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与直线有两个不同的交点.下列结论:①;②当时,有最小值;③方程有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则;其中正确的结论的个数是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展以“学习朱子文化,弘扬理学思想”为主题的读书月活动,并向学生征集读后感,学校将收到的读后感篇数按年级进行统计,绘制了以下两幅统计图(不完整).
据图中提供的信息完成以下问题
(1)扇形统计图中“八年级”对应的圆心角是 °,并补全条形统计图;
(2)经过评审,全校有4篇读后感荣获特等奖,其中有一篇来自七年级,学校准备从特等奖读后感中任选两篇在校广播电台上播出,请利用画树状图或列表的方法求出七年级特等奖读后感被校广播电台播出的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com