【题目】如图,在菱形ABCD中,∠BAD=120°,将菱形沿EF折叠,点B正好落在AD边的点G处,且EG⊥AC,若CD=8,则FG的长为( )
A.4
B.4
C.4
D.6
【答案】B
【解析】解:如图,设AC与EG交于点O,FG交AC于H.
∵四边形ABCD是菱形,∠BAD=120°,
易证△ABC、△ACD是等边三角形,
∴∠CAD=∠B=60°,
∵EG⊥AC,
∴∠GOH=90°,
∵∠EGF=∠B=60°,
∴∠OHG=30°,
∴∠AGH=90°,
∴FG⊥AD,
∴FG是菱形的高,即等边三角形△ABC的高= ×8=4 .
所以答案是B.
【考点精析】利用菱形的性质和翻折变换(折叠问题)对题目进行判断即可得到答案,需要熟知菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
科目:初中数学 来源: 题型:
【题目】国家推行“节能减排,低碳经济”政策后,某企业推出一种“CNG”改烧汽油为天然气的装置,每辆车改装费为b元,据市场调查知:每辆车改装前、后的燃料费(含改装费)y0,y1(元)与正常运营时间x(天)之间分别满足关系式:y0=ax,y1=b+50x,图象如图所示.
(1)每辆车改装前每天的燃料费a= 元,每辆车的改装费b= 元,正常运营时间 天后,就可以从节省的燃料费中收回改装成本;
(2)某出租汽车公司一次性改装了100辆出租车,因而正常运行多少天后共节省燃料费40万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲、乙两盏路灯杆相距20米,一天晚上,当小明从灯甲底部向灯乙底部直行16米时,发现自己的身影顶部正好接触到路灯乙的底部.已知小明的身高为1.6米,那么路灯甲的高为( )
A.7米
B.8米
C.9米
D.10米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=nAD,点E,F分别在边AB,AD上且不与顶点A,B,D重合,∠AEF=∠BCE,圈O过A,E,F三点.
(1)求证:圈O与CE相切与点E;
(2)如图1,若AF=2FD且∠AEF=30°,求n的值;
(3)如图2.若EF=EC且圈O与边CD相切,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(2,0),B(1,m2﹣4m+5).
(1)直接判断△ABO是什么图形;
(2)如果S△ABO有最小值,求m的值;
(3)抛物线y=﹣(x﹣2)(x﹣n)经过点B且与y轴交于点C,与x轴交于两点A,D.
①用含m的式子表示点C和点D坐标;
②点P是抛物线上x轴上方任一点,PQ∥BD交x轴于点Q,将△ABO向左平移到△A′B′O′,点A,B,O的对应点分别是A′,B′,O′,当点A'与点D重合时,点B'在线段PQ上,如果点P恰好是抛物线顶点,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李叔叔在“中央山水”买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面(由四个长方形组成)如图所示(图中长度单位:米),请解答下问题:
(1)用式子表示这所住宅的总面积;
(2)若铺1平方米地砖平均费用120元,求当x=6时,这套住宅铺地砖总费用为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AE平分∠BAD交BC于点E.
(1)作CF平分∠BCD交AD于点F(用尺规作图,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,求证:△ABE≌△CDF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,图①是边长为1的等边三角形纸板,周长记为C1,沿图①的底边剪去一块边长为的等边三角形,得到图②,周长记为C2,然后沿同一底边依次剪去一块更小的等边三角形纸板(即其边长为前一块被剪掉等边三角形纸板边长的),得图③④…,图n的周长记为Cn,若n≥3,则Cn-Cn-1=_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com