精英家教网 > 初中数学 > 题目详情

【题目】如图,甲、乙两盏路灯杆相距20米,一天晚上,当小明从灯甲底部向灯乙底部直行16米时,发现自己的身影顶部正好接触到路灯乙的底部.已知小明的身高为1.6米,那么路灯甲的高为(
A.7米
B.8米
C.9米
D.10米

【答案】B
【解析】解:如图,
∵AB⊥OB,CD⊥OB,
∴△ABO∽△CDO,
=
=
解得:AB=8,
故选:B.
【考点精析】掌握相似三角形的应用和中心投影是解答本题的根本,需要知道测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解;手电筒、路灯和台灯的光线可以看成是从一个点发出的,这样的光线所形成的投影称为中心投影;作一物体中心投影的方法:过投影中心与物体顶端作直线,直线与投影面的交点与物体的底端之间的线段即为物体的影子.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx经过A(4,0),B(1,3)两点,点B、C关于抛物线的对称轴l对称,过点B作直线BH⊥x轴,交x轴于点H.

(1)求抛物线的解析式;
(2)若点M在直线BH上运动,点N在x轴上运动,是否存在这样的点M、N,使得以点M为直角顶点的△CNM是等腰直角三角形?若存在,请求出点M、N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的方程

求证:不论为任何实数,此方程总有实数根;

若方程有两个不同的整数根,且为正整数,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,点PCD边上一动点,连接PA,分别过点BD,垂足分别为EF

如图,请探究BEDFEF这三条线段的长度具有怎样的数量关系?

若点PDC的延长线上,如图,那么这三条线段的长度之间又具有怎样的数量关系?

若点PCD的延长线上,如图,请直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列汽车标志中即是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:

解方程=1

老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:

解:方程两边同时乘以6,得×6﹣×6=1…………①

去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②

去括号,得:4﹣6x﹣3x+15=1……………③

移项,得:﹣6x﹣3x=1﹣4﹣15…………④

合并同类项,得﹣9x=﹣18……………⑤

系数化1,得:x=2………………⑥

上述小明的解题过程从第   步开始出现错误,错误的原因是   

请帮小明改正错误,写出完整的解题过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点ECBF上,

求证:

ACDEM,且,将线段CE绕点C顺时针旋转,使点E旋转到AB上的G处,求旋转角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD=120°,将菱形沿EF折叠,点B正好落在AD边的点G处,且EG⊥AC,若CD=8,则FG的长为(
A.4
B.4
C.4
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.

(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;

(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明;若不是,请说明理由.

查看答案和解析>>

同步练习册答案