精英家教网 > 初中数学 > 题目详情

【题目】如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在 的中点,连接AF并延长与CB的延长线相交于点G,连接OF.
(1)求证:OF= BG;
(2)若AB=4,求DC的长.

【答案】
(1)证明:∵以Rt△ABC的直角边AB为直径作⊙O,点F恰好落在 的中点,

=

∴∠AOF=∠BOF,

∵∠ABC=∠ABG=90°,

∴∠AOF=∠ABG,

∴FO∥BG,

∵AO=BO,

∴FO是△ABG的中位线,

∴FO= BG


(2)解:在△FOE和△CBE中,

∴△FOE≌△CBE(ASA),

∴BC=FO= AB=2,

∴AC= =2

连接DB,

∵AB为⊙O直径,

∴∠ADB=90°,

∴∠ADB=∠ABC,

∵∠BCD=∠ACB,

∴△BCD∽△ACB,

=

=

解得:DC=


【解析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是△ABG的中位线,即可得出答案;(2)首先得出△FOE≌△CBE(ASA),则BC=FO= AB=2,进而得出AC的长,再利用相似三角形的判定与性质得出DC的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我市开展“美丽自宫,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:

(1)将条形统计图补充完整;

(2)扇形图中的“1.5小时”部分圆心角是多少度?

(3)求抽查的学生劳动时间的众数、中位数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在Rt△ABC中,∠ACB=90°,点D在边AC上,点E是BD的中点,CE的延长线交边AB于点F,且∠CED=∠A.
(1)求证:AC=AF;
(2)在边AB的下方画∠GBA=∠CED,交CF的延长线于点G,联结DG,在图中画出图形,并证明四边形CDGB是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.

(1)若∠BOD=70°,求∠AOM和∠CON的度数;

(2)若∠BON=50°,求∠AOM和∠CON的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

甲组的5名工人9月份完成的总工作量比此月人均定额的4倍多30件,乙组的6名工人9月份完成的总工作量比此月人均定额的6倍少30

(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少?

(2)如果甲组工人实际完成的此月人均工作量比乙组的多3件,则此月人均定额是多少?

(3)如果甲组工人实际完成的此月人均工作量比乙组的少3件,则此月人均定额是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax-2ax-3a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,抛物线的对称轴与抛物线交于点P,与直线BC交于点M,且PM= AB.

(1)求抛物线的解析式;
(2)点K是x轴正半轴上一点,点A、P关于点K的对称点分别为 ,连接 ,若 ,求点K的坐标;
(3)矩形ADEF的边AF在x轴负半轴上,边AD在第二象限,AD=2,DE=3.将矩形ADEF沿x轴正方向平移t(t>0)个单位,直线AD、EF分别交抛物线于G、H.问:是否存在实数t,使得以点D、F、G、H为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰ABC的底边长为8cm,腰长为5cm,一动点P在底边上从B向C以0.25cm/s的速度移动,请你探究:当P运动秒时,P点与顶点A的连线PA与腰垂直。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑摩托车从B地到A地,到达A地后立即按原路返回.如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:

(1)直接写出y,y与x之间的函数关系式(不写过程);

(2)①求出点M的坐标,并解释该点坐标所表示的实际意义;

根据图象判断,x取何值时,y>y

查看答案和解析>>

同步练习册答案