精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax-2ax-3a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,抛物线的对称轴与抛物线交于点P,与直线BC交于点M,且PM= AB.

(1)求抛物线的解析式;
(2)点K是x轴正半轴上一点,点A、P关于点K的对称点分别为 ,连接 ,若 ,求点K的坐标;
(3)矩形ADEF的边AF在x轴负半轴上,边AD在第二象限,AD=2,DE=3.将矩形ADEF沿x轴正方向平移t(t>0)个单位,直线AD、EF分别交抛物线于G、H.问:是否存在实数t,使得以点D、F、G、H为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,说明理由.

【答案】
(1)

解:由抛物线y=ax-2ax-3a可得它的顶点坐标为(1,-4a).

当x=0时,y=3a,则C(0,-3a)

当y=0时,

则ax-2ax-3a=0,则x1=-1,x2=3.

则A(-1,0),B(3,0).

即AB=4.

由B(3,0)和C(0,-3a)可得直线BC的解析式为y=ax-3a,

则M(1,-2a),

则pM=-2a=2,即a=-1,

所以抛物线的解析式为y=-x+2x+3.


(2)

解:如图,连接KP1,设K(m,0),m>0,

则P1(2m-1,4),A1(2m+1,0),

当 P1A⊥P1A1时,KP1=AK,

则(2m-1-m)2+42=(m+1)2

解得m=4.

则K(4,0).


(3)

解:由题可得DG//FH,当DG=FH时,以点D、F、G、H为顶点的四边形是平行四边形.

因为G是直线AD与抛物线的交点,则G(-1+t,-(-1+t)2+2(-1+t)+3),即(-1+t,-t2+4t)

同理H(-4+t,-(-4+t)2+2(-4+t)+3),即H(-4+t,-t2+10t-21),

则DG=|2-(-t2+4t)|=|t2-4t+2|,

FH=|-t2+10t-21|,

当DG=FH时,

则t2-4t+2=-t2+10t-21或t2-4t+2=-(-t2+10t-21),

解得t=或t=


【解析】(1)由抛物线y=ax-2ax-3a可分别求出点P,C,B,A的坐标,则可求出AB的值,求出BC的解析式,从而得到点M的坐标,PM的长度,由PM=AB,可求得a;
(2)根据对称的性质得到点P1的坐标,由当 P1A⊥P1A1时,KP1=AK,列方程解出m即可;
(3)由题可得DG//FH,当DG=FH时,以点D、F、G、H为顶点的四边形是平行四边形,则分别求出DG和FH的值,列方程即可解得.
【考点精析】本题主要考查了二次函数的图象和二次函数的性质的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:)

(1)求这7天内小申家每天用水量的平均数和中位数;

(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;

(3)请你根据统计图中的信息,给小申家提出一条全理的节约用水建议,并估算采用你的建议后小申家一个月(30天计算)的节约用水量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y= (x>0)的图像交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN交BA的延长线于点M.

(1)求证:AP⊥BQ;
(2)若AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在 的中点,连接AF并延长与CB的延长线相交于点G,连接OF.
(1)求证:OF= BG;
(2)若AB=4,求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点D为边BC的中点,过点A作射线AE,过点CCFAE于点F,过点BBGAE于点G,连接FD并延长,交BG于点H.

(1)求证:DF=DH;

(2)若∠CFD=120°,求证:DHG为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC是等腰直角三角形.A=90°,CE平分∠ACBAB于点E.

(1)如图1,若点D在斜边BC上,DM垂直平分BE,垂足为M.求证:BD=AE.

(2)如图2,过点BBFCECE的延长线于点F.CE=6,求BEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax+bx+c的图像如图所示,则代数式(a+b)-c的值( ).

A.大于0
B.等于0
C.小于0
D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,菱形ABCD中,AB=10cm,BD=12cm,对角线AC与BD相交于点O,直线MN以1cm/s从点D出发,沿DB方向匀速运动,运动过程中始终保持MN⊥BD,垂足是点P,过点P作PQ⊥BC,交BC于点Q.(0<t<6)
(1)求线段PQ的长;(用含t的代数式表示)
(2)设△MQP的面积为y(单位:cm2),求y与t的函数关系式;
(3)是否存在某时刻t,使线段MQ恰好经过点O?若存在求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案