精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,点D为边BC的中点,过点A作射线AE,过点CCFAE于点F,过点BBGAE于点G,连接FD并延长,交BG于点H.

(1)求证:DF=DH;

(2)若∠CFD=120°,求证:DHG为等边三角形.

【答案】(1)证明见解析;(2)证明见解析.

【解析】试题

(1)首先证明∠1=2,再证明DCF≌△DBH即可得到DF=DH;

(2)首先根据角的和差关系可以计算出∠GFH=30°,再由∠BGM=90°可得∠GHD=60°,再根据直角三角形的性质可得,HG=HF,进而得到结论.

试题解析:(1)CFAE,BGAE,

∴∠BGF=CFG=90°

∴∠1+GMB=2+CME,

∵∠GMB=CME,

∴∠1=2,

∵点D为边BC的中点,

DB=CD,

BHDCED中,

∴△BHD≌△CED(ASA),

DF=DH;

(2)∵∠CFD=120°CFG=90°

∴∠GFH=30°

∵∠BGM=90°

∴∠GHD=60°

∵△HGF是直角三角形,HD=DF,

DG=HF=DH,

∴△DHG为等边三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A、B两地相距4千米,上午11:00,甲从A地出发步行到B地,11:20乙从B地出发骑自行车到A地,甲乙两人离A地的距离(千米)与甲所用时间(分)之间的关系如图所示,由图中的信息可知,乙到达A地的时间为(  )

A. 上午11:40 B. 上午11:35 C. 上午11:45 D. 上午11:50

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABC中,AD平分 BAC,按如下步骤作图:
第一步,分别以点A、D为圆心,以大于 AD的长为半径在AD两侧做弧,交于两点M、N;
第二步,连接MN分别交AB、AC于点E、F;
第三步,连接DE、DF.
若BD=6,AF=4,CD=3,则BE的长是( ).

A.2
B.4
C.6
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形 ABCD 中,AB=AD,AC=5,DAB=DCB=90°, 则四边形 ABCD 的面积为(

A. 15 B. 14.5 C. 13 D. 12.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax-2ax-3a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,抛物线的对称轴与抛物线交于点P,与直线BC交于点M,且PM= AB.

(1)求抛物线的解析式;
(2)点K是x轴正半轴上一点,点A、P关于点K的对称点分别为 ,连接 ,若 ,求点K的坐标;
(3)矩形ADEF的边AF在x轴负半轴上,边AD在第二象限,AD=2,DE=3.将矩形ADEF沿x轴正方向平移t(t>0)个单位,直线AD、EF分别交抛物线于G、H.问:是否存在实数t,使得以点D、F、G、H为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图放置的△OAB1 , △B1A1B2 , △B2A2B3 , …都是边长为2的等边三角形,点A在y轴上,点O,B1 , B2 , B3…都在直线l上,则点B2017的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2015本溪,第9题,3分)如图,在平面直角坐标系中,直线ABx轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线)上,则k的值为(  )

A. 4 B. ﹣2 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC⊥BC,AC=BC=4,以AC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作 .过点O作BC的平行线交两弧于点D、E,则阴影部分的面积是

查看答案和解析>>

同步练习册答案