【题目】在每个小正方形的边长为1的网格中.点A,B,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.
(1)如图①,当BE=时,计算AE+AF的值等于 ;
(2)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明) .
【答案】(1);(2)取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求.
【解析】
试题分析:(1)根据勾股定理可得:DB==5,因为BE=DF=,所以可得AF=BD=2.5,根据勾股定理可得:AE==,所以AE+AF==,故答案为:;
(2)如图,
首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使∠HBC=∠ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH==5,结合相似三角形选出格点K,根据,得BP=BH=×5=4=DA,易证△ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB⊥BC,因此首先确定格点M使DM⊥DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到,得DG=DM=×5=3,易证△DFG≌BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.
故答案为:取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求.
科目:初中数学 来源: 题型:
【题目】如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点An,如果点An与原点的距离不小于20,那么n的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用反证法证明:在四边形中,至少有一个内角大于或等于90°,应先假设( )
A. 四边形中每一个内角都小于90° B. 四边形中最多有一个内角不小于90°
C. 四边形中每一个内角都大于90° D. 四边形中有一个内角大于90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】货主两次租用某汽车运输公司的甲,乙两种货车运送货物往某地,第一次租用甲货车2辆和乙货车3辆共运送15.5吨货物,第二次租用甲货车3辆和乙货车2辆共运送17吨货物,两次运输都按货车的最大核定载货量刚好将货物运送完,没有超载.
(1)求甲,乙两种货车每辆最大核定载货量是多少吨?
(2)已知租用甲种货车运费为每辆1200元,租用乙种货车运费为每辆800元,现在货主有24吨货物需要运送,而汽车运输公司只有2辆甲种货车,其它的都是乙种货车,问有几种租车方案?哪种方案费用较少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com