精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线轴交于两点(点在点的左边),与轴交于点,连接.

1)求三点的坐标;

2)若点为线段上的一点(不与重合),轴,且交抛物线于点,交轴于点,当的面积最大时,求的周长.

【答案】1)点的坐标是:;(2的周长

【解析】

1)依据抛物线的解析式直接求得C的坐标,令y=0解方程即可求得AB点的坐标;

2)设的面积为,点的坐标为,则可表示出NMBN,根据题意,列式求解得,则当时,有最大值,则可求解的周长.

(1)由抛物线的解析式y=-x2+2x+3,

时,

∴C(0,3),

时,

解得:

的坐标是:

2)设的面积为,点的坐标为

则有

.

根据题意,

时,有最大值,

此时,

.

根据勾股定理,得

的周长

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2+bx+cx轴交于点A(﹣20

1)填空:c=   ;(用含b的式子表示)

2b4

①求证:抛物线与x轴有两个交点;

②设抛物线与x轴的另一个交点为B,当线段AB上恰有5个整点(横坐标、纵坐标都是整数的点),求b的取值范围;

3)平移抛物线,使其顶点P落在直线y=3x2上,设抛物线与直线的另一个交点为QC在该直线下方的抛物线上,求△CPQ面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,直线y=x-3x轴于点B,交y轴于点C,抛物线经过点A(-10)BC三点,Fy轴负半轴上,OF=OA.

(1)求抛物线的解析式;

(2)在第一象限的抛物线上存在一点P,满足SABC=SPBC,请求出点P的坐标;

(3)D是直线BC的下方的抛物线上的一个动点,过D点作DEy轴,交直线BC于点E①当四边形CDEF为平行四边形时,求D点的坐标;

②是否存在点D,使CEDF互相垂直平分?若存在,请求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按如下方法,将ABC的三边缩小的原来的,如图,任取一点O,连AOBOCO,并取它们的中点DEF,得DEF,则下列说法正确的个数是(  )

ABCDEF是位似图形ABCDEF是相似图形

ABCDEF的周长比为12ABCDEF的面积比为41

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.

(1)若BPQABC相似,求t的值;

(2)连接AQ、CP,若AQCP,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx﹣3a经过点A﹣10)、C03),与x轴交于另一点B,抛物线的顶点为D

1)求此二次函数解析式;

2)连接DCBCDB,求证:△BCD是直角三角形;

3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新华商场为迎接家电下乡活动销售某种冰箱,每台进价为2500元,市场调研表明;当销售价定为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们规定平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离dA到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D定义点A到图形G的距离跨度为R=D-d

1如图1在平面直角坐标系xOy图形G1为以O为圆心2为半径的圆直接写出以下各点到图形G1的距离跨度

A10的距离跨度______________

B- 的距离跨度____________

C-3-2的距离跨度____________

根据中的结果猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是______________

2如图2在平面直角坐标系xOy图形G2为以D-10为圆心2为半径的圆直线y=kx-1上存在到G2的距离跨度为2的点k的取值范围

3如图3在平面直角坐标系xOy射线OPy=xx≥0),E是以3为半径的圆且圆心Ex轴上运动若射线OP上存在点到E的距离跨度为2求出圆心E的横坐标xE的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.

1)如图1,在ABC中,CD为角平分线,∠A=40°B=60°,求证:CDABC的完美分割线.

2)在ABC中,∠A=48°CDABC的完美分割线,且ACD为等腰三角形,求∠ACB的度数.

3)如图2ABC中,AC=2BC=CDABC的完美分割线,且ACD是以CD为底边的等腰三角形,求完美分割线CD的长.

查看答案和解析>>

同步练习册答案