【题目】抛物线y=x2﹣3mx+2m+1与x轴正半轴交于A,B两点(A在B的左侧),与y轴正半轴交于点C,且OA=OC.
(1)抛物线的解析式为 (直接写出结果);
(2)如图1,D为y轴上一点,过点D的直线y=x+n交抛物线于E,F,若EF=5,求点D的坐标;
(3)将△AOC绕平面内某点逆时针旋转90°至△A'O'C'(点A,C,O的对应点分别为A',C',O'),若旋转后的△A'O'C'恰好有一边的两个端点落在抛物线上,请求出点A'的坐标.
【答案】(1)y=x2﹣x+2;(2)点D的坐标为:(0,);(3) 点A′的坐标为:(6,2)或(4,2).
【解析】
(1)点C(0,2m+1),OA=OC,则点A(2m+1),将点A的坐标代入抛物线的表达式,即可求解;
(2)联立①与直线EF的表达式并整理得:x2﹣8x+8﹣4n=0,则a+b=8,ab=8﹣4n,设直线EF的倾斜角为α,则tan,则cosα=,则b﹣a==2,即可求解;
(3)分A′C′在抛物线上、O′C′在抛物线上两种情况,分别求解即可.
解:(1)点C(0,2m+1),OA=OC,则点A(2m+1,0)
将点A的坐标代入抛物线的表达式并解得:m=,
故抛物线的表达式为:y=(x2﹣6x+8)=x2﹣x+2…①,
故答案为:y=x2﹣x+2;
(2)由抛物线的表达式知,点A、C的坐标分别为:(2,0)、(0,2),
则点D(0,n),设点E、F的纵坐标为:a,b,
联立①与直线EF的表达式并整理得:x2﹣8x+8﹣4n=0,
则a+b=8,ab=8﹣4n,
设直线EF的倾斜角为α,则tan,则cosα=,
则b﹣a==2,
(b﹣a)2=(a+b)2﹣4ab=64﹣4(8﹣4n)=(2)2,解得:n=,
故点D的坐标为:(0,);
(3)将△AOC绕平面内某点逆时针旋转90°至△A'O'C'(点A,C,O的对应点分别为A',C',O'),
若旋转后的△A'O'C'恰好有一边的两个端点落在抛物线上,如图所示,
①当A′C′在抛物线上时(左侧图),
设点A′(x,y),则点C′(x﹣2,y﹣2),
将点A′、C′的坐标代入抛物线表达式得:
y=(x2﹣6x+8),y﹣2= [(x﹣2)2﹣6(x﹣2)+8)],
解得:x=6,y=2,故点A′(6,2);
①当O′C′在抛物线上时(右侧图),A与C’重合,
由图象及旋转可得:OC=AB=2,OA=A’B=2
∴点A′(4,2);
综上,点A′的坐标为:(6,2)或(4,2).
科目:初中数学 来源: 题型:
【题目】△ABC 在平面直角坐标系中的位置如图所示,其中每 个小正方形的边长为 1 个单位长度.
(1)画出△ABC 关于原点 O 的中心对称图形△A1B1C1,并写出点 A1 的坐标;
(2)将△ABC 绕点 C 顺时针旋转 90°得到△A2B2C,画出△A2B2C,求在旋转过程中,点 A 所经过的路径长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.
(1)如图1,DE与BC的数量关系是 ;
(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;
(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.
(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 ;
(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,解一元二次方程,可以把它转化为两个一元一次方程来解,其实用“转化”的数学思想我们还可以解一些新的方程例如一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,通过解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.
(1)方程x3+x2﹣2x=0的解是x1=0,x2= ,x3= .
(2)用“转化”的思想求方程=x的解.
(3)试直接写出的解 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程kx2﹣3x+1=0有实数根.
(1)求k的取值范围;
(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,3).
(1)求此抛物线所对应函数的表达式;
(2)若M 是抛物线对称轴上一个动点,求当 MA+MC 的值最小时 M 点坐标;
(3)若抛物线的顶点为D,在其对称轴右侧的抛物线上是否存在点P,使得△PCD为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在四边形中,,,,,垂直平分.点从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为;当一个点停止运动,另一个点也停止运动.过点作,交于点,过点作,分别交,于点,.连接,.设运动时间为,解答下列问题:
(1)当为何值时,点在的平分线上?
(2)设四边形的面积为,求与的函数关系式.
(3)连接,,在运动过程中,是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com