精英家教网 > 初中数学 > 题目详情

【题目】中,,BDAC边上的中线,过点C于点E,过点ABD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF.

求证:

求证:四边形BDFG为菱形;

,求四边形BDFG的周长.

【答案】(1)证明见解析(2)证明见解析(3)8

【解析】

利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,

利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,

,则,利用菱形的性质和勾股定理得到CFAFAC之间的关系,解出x即可.

证明:

AC的中点,

证明:

四边形BDFG为平行四边形,

四边形BDFG为菱形,

解:设,则

中,

解得:舍去

菱形BDFG的周长为8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知过点(2,-1),与轴交于点A,F点为(1,2).

(Ⅰ)求的值及A点的坐标;

(Ⅱ)将函数的图象沿方向向上平移得到函数,其图象与轴交于点Q,且OQ=QF,求平移后的函数的解析式;

(Ⅲ)若点A关于的对称点为K,请求出直线FK与轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,△ABO的顶点坐标分别为O(0,0)、A(2a,0)、B(0,﹣a),线段EF两端点坐标为E(﹣m,a+1),F(﹣m,1)(2a>m>a);直线l∥y轴交x轴于P(a,0),且线段EFCD关于y轴对称,线段CDNM关于直线l对称.

(1)求点N、M的坐标(用含m、a的代数式表示);

(2)△ABO△MFE通过平移能重合吗?能与不能都要说明其理由,若能请你说出一个平移方案(平移的单位数用m、a表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为 m,到墙边OA的距离分别为 m, m.
(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;
(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象与直线y=x+1相交于点A(﹣1,m)和点B(n,5).
(1)求该二次函数的关系式;
(2)在给定的平面直角坐标系中,画出这两个函数的大致图象;
(3)结合图象直接写出x2+bx+c>x+1时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边ABC的边长为a,B,Cx轴上,Ay轴上.

(1)作ABC关于x轴的对称图形A′B′C′;

(2)求ABC各顶点坐标和A′B′C′各顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,CAB=90°.试求:

(1)AD的长;

(2)ABE的面积;

(3)ACE和△ABE的周长的差.

查看答案和解析>>

同步练习册答案