精英家教网 > 初中数学 > 题目详情

【题目】已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.
(1)如图1,若AB∥ON,则∠ABO的度数是
(2)如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);
(3)如图3,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)

【答案】
(1)40°
(2)解:②如答图1,∵∠MON=80°,且OE平分∠MON,

∴∠1=∠2=40°,

又∵AB∥ON,

∴∠3=∠1=40°,

∵∠BAD=∠ABD,

∴∠BAD=40°

∴∠4=80°,

∴∠OAC=60°,即x=60°.


(3)存在这样的x,

①如答图2,当点D在线段OB上时,

若∠BAD=∠ABD,则x=40°;

若∠BAD=∠BDA,则x=25°;

若∠ADB=∠ABD,则x=10°.

②如答图3,当点D在射线BE上时,因为∠ABE=130°,且三角形的内角和为180°,

所以只有∠BAD=∠BDA,此时x=130°,C不在ON上,舍去;

综上可知,存在这样的x的值,使得△ADB中有两个相等的角,

且x=10°、25°、40°.


【解析】解:(1)∵∠MON=80°,OE平分∠MON, ∴∠AOB=∠BON=40°,
∵AB∥ON,
∴∠ABO=40°
故答案是:40°;
【考点精析】解答此题的关键在于理解垂线的性质的相关知识,掌握垂线的性质:1、过一点有且只有一条直线与己知直线垂直.2、垂线段最短,以及对平行线的性质的理解,了解两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一个不透明的布袋里,装有4个标号为1,2,3,4的小球;它们大小、材质、形状完全相同,甲从布袋中任意摸出一个小球,记下数字为x,乙从剩下的球中任意摸出一个小球,记下数字为y,以此确定点M的坐标(x,y)。

(l)请你用画树状图或列表的方法,写出点M所有可能的坐标;

(2)求点M(x,y)在函数y=的图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.

(1)在网格中画出△ABC关于y轴对称的△A1B1C1
(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;
(3)在y轴上确定一点P,使PA+PB最短.(只需作图保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a<b,则a+c<b+c。()

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值. 解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)a2+b2﹣4a+4=0,则a= . b=
(2)已知x2+2y2﹣2xy+6y+9=0,求xy的值.
(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABC=ACB,以AC为直径的O分别交AB、BC于点M、N,点P在AB的延长线上,且CAB=2BCP.

(1)求证:直线CP是O的切线.

(2)若BC=2,sinBCP=,求点B到AC的距离.

(3)在第(2)的条件下,求ACP的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙0的直径,∠ACB=60°,连接AB,过A,B两点分别作⊙O的切线,两切线交于点P.若已知⊙0半径为1,则△PAB的周长为( )

A. B. C. D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算
(1)(2﹣π)0+( 2+(﹣2)3
(2)0.5200×(﹣2)202
(3)(﹣2x32(﹣x2)÷[(﹣x)2]3
(4)(3x﹣1)(x+1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)

查看答案和解析>>

同步练习册答案