【题目】阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值. 解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)a2+b2﹣4a+4=0,则a= . b= .
(2)已知x2+2y2﹣2xy+6y+9=0,求xy的值.
(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长.
【答案】
(1)2;0
(2)解:∵x2+2y2﹣2xy+6y+9=0,
∴x2+y2﹣2xy+y2+6y+9=0,
即(x﹣y)2+(y+3)2=0,
则x﹣y=0,y+3=0,
解得:x=y=﹣3,
∴xy=(﹣3)﹣3=﹣ ;
(3)解:∵2a2+b2﹣4a﹣6b+11=0,
∴2a2﹣4a+2+b2﹣6b+9=0,
∴2(a﹣1)2+(b﹣3)2=0,
则a﹣1=0,b﹣3=0,
解得:a=1,b=3,
由三角形三边关系可知,三角形三边分别为1、3、3,
则△ABC的周长为1+3+3=7.
【解析】解:(1)已知等式整理得:(a﹣2)2+b2=0, 解得:a=2,b=0;
所以答案是:2;0;
【考点精析】解答此题的关键在于理解因式分解的应用的相关知识,掌握因式分解是整式乘法的逆向变形,可以应用与数字计算、求值、整除性问题、判断三角形的形状、解方程.
科目:初中数学 来源: 题型:
【题目】在数学中,为了书写简便,我们通常记 k=1+2+3+…+(n﹣1)+n,如 (x+k),=(x+1)+(x+2)+(x+3)+(x+4),则化简 [(x﹣k)(x﹣k﹣1)]的结果是( )
A.3x2﹣15x+20
B.3x2﹣9x+8
C.3x2﹣6x﹣20
D.3x2﹣12x﹣9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.
(1)如图1,若AB∥ON,则∠ABO的度数是;
(2)如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);
(3)如图3,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com