【题目】在平面直角坐标系xOy中,若P和Q两点关于原点对称,则称点P与点Q是一个“和谐点对”,表示为[P,Q],比如[P(1,2),Q(﹣1,﹣2)]是一个“和谐点对”.
(1)写出反比例函数y=图象上的一个“和谐点对”;
(2)已知二次函数y=x2+mx+n,
①若此函数图象上存在一个和谐点对[A,B],其中点A的坐标为(2,4),求m,n的值;
②在①的条件下,在y轴上取一点M(0,b),当∠AMB为锐角时,求b的取值范围.
【答案】(1)可取[P(1,1),Q(﹣1,﹣1)];(2)①m=2,n=-4;②b的取值范围为或.
【解析】
(1)由题目中所给和谐点对的定义可知P、Q即为关于原点对称的两个点,在反比例函数图象上找出两点即可;
(2)①由A、B为和谐点对可求得点B的坐标,则可得到关于m、n的方程组,可求得其值;②当M在x轴上方时,可先求得∠AMB为直角时对应的M点的坐标,当点M向上运动时满足∠AMB为锐角;当点M在x轴下方时,同理可求得b的取值范围.
解:(1)∵y=,
∴可取[P(1,1),Q(﹣1,﹣1)];
(2)①∵A(2,4)且A和B为和谐点对,
∴B点坐标为(﹣2,﹣4),
将A和B两点坐标代入y=x2+mx+n,可得,
∴;
②如图:
(ⅰ) M点在x轴上方时,
若∠AMB 为直角(M点在x轴上),则△ABC为直角三角形,
∵A(2,4)且A和B为和谐点对,B点坐标为(﹣2,﹣4),
∴原点O在AB线段上且O为AB中点,
∴AB=2OA,
∵A(2,4),
∴OA=,
∴AB=,
在Rt△ABC中,
∵O为AB中点
∴MO=OA=,
若∠AMB 为锐角,则;
(ⅱ) M点在x轴下方时,同理可得, ,
综上所述,b的取值范围为:或.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c经过点A(0,﹣3)、B(﹣1,0)、C(2,﹣3),抛物线与x轴的另一交点为点E,点P为抛物线上一动点,设点P的横坐标为t.
(1)求抛物线的解析式;
(2)若点P在第一象限,点M为抛物线对称轴上一点,当四边形MBEP恰好是平行四边形时,求点P的坐标;
(3)若点P在第四象限,连结PA、PE及AE,当t为何值时,△PAE的面积最大?最大面积是多少?
(4)是否存在点P,使△PAE为以AE为直角边的直角三角形,若存在,直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数的图象于点M,△AOM的面积为3.
(1)求反比例函数的解析式;
(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数的图象上,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有4张看上去无差别的卡片,上面分别写着1,2,3,4.
(1)一次性随机抽取2张卡片,求这两张卡片上的数字之和为奇数的概率;
(2)随机摸取1张后,放回并混在一起,再随机抽取1张,求两次取出的卡片上的数字之和等于4的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果批发商销售每箱进价为40元的柑橘,物价部门规定每箱售价不得高于55元;市场调查发现,若每箱以45元的价格销售,平均每天销售105箱;每箱以50元的价格销售,平均每天销售90箱.假定每天销售量y(箱)与销售价x(元/箱)之间满足一次函数关系式.
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。
(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时 刻,一根长为l米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为【 】
A.米 B.12米 C.米 D.10米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线在坐标系中的位置如图所示,它与,轴的交点分别为,,是其对称轴上的动点,根据图中提供的信息,给出以下结论:①,②是的一个根,③若,,则.其中正确的有______个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com