分析 (1)由矩形的性质得出∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,由折叠的性质得出△ABP≌△EBP,得出EP=AP,∠E=∠A=90°,BE=AB=8,由ASA证明△ODP≌△OEG,得出OP=OG;
(2)由全等三角形的性质得出PD=GE,得出DG=EP,设AP=EP=x,则PD=GE=6-x,DG=x,得出CG=8-x,BG=2+x;
(3)由勾股定理得出方程,解方程即可.
解答 (1)证明:如图所示:![]()
∵四边形ABCD是矩形,
∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,
∵△ABP沿BP翻折至△EBP,
∴△ABP≌△EBP,
∴EP=AP,∠E=∠A=90°,BE=AB=8,
在△ODP和△OEG中,$\left\{\begin{array}{l}{∠D=∠E}\\{OD=OE}\\{∠DOP=∠EOG}\end{array}\right.$,
∴△ODP≌△OEG(ASA),
∴OP=OG;
(2)解:∵△ODP≌△OEG,
∴PD=GE,
∴DG=EP,
设AP=EP=x,则PD=GE=6-x,DG=x,
∴CG=8-x,BG=8-(6-x)=2+x;
(3)解:由勾股定理得:BC2+CG2=BG2,
即62+(8-x)2=(x+2)2,
解得:x=4.8,
∴AP=4.8.
点评 本题考查了翻折变换的性质、矩形的性质、全等三角形的判定与性质、勾股定理;熟练掌握翻折变换和矩形的性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
| 摸到黑球的次数m | 23 | 31 | 60 | 130 | 203 | 251 |
| 摸到黑球的频率$\frac{m}{n}$ | 0.23 | 0.21 | 0.30 | 0.26 | 0.253 | a |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com