精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象交于点A(﹣1,3)、B(n,﹣1).

(1)求反比例函数的解析式;

(2)当y1>y2时,直接写出x的取值范围.

【答案】(1)y=﹣(2)x<﹣1或0<x<3,y1>y2

【解析】

试题分析:(1)把A点坐标代入可求出m的值,从而得到反比例函数解析式;

(2)利用反比例函数解析式确定B点坐标,然后观察函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的取值范围即可.

解:(1)把A(﹣1,3)代入可得m=﹣1×3=﹣3,

所以反比例函数解析式为y=﹣

(2)把B(n,﹣1)代入y=﹣得﹣n=﹣3,解得n=3,则B(3,﹣1),

所以当x<﹣1或0<x<3,y1>y2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO绕点O顺时针旋转,得△A'B'O,点AB旋转后的对应点为A',B',记旋转角为α(0°<α<360°).

(1)如图①,当点A′,BB′共线时,求AA′的长.

(2)如图②,当α=90°,求直线ABAB′的交点C的坐标;

(3)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k为常数).

(1)求证无论k为何值,方程总有两个不相等实数根;

(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;

(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在二次函数y=-x2bxc中,函数y与自变量x的部分对应值如下表:

x

……

2

0

3

4

……

y

……

7

m

n

7

……

mn的大小关系为( )

A. mn B. mn C. mn D. 无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角△ABC中,∠C=90°,AC15BC20,点DAB边上一动点,若AD的长度为m,且m的范围为0m9,在ACBC边上分别取两点EF,满足EDABFEED

1)求DE的长度;(用含m的代数式表示)

2)求EF的长度;(用含m的代数式表示)

3)请根据m的不同取值,探索过DEF三点的圆与△ABC三边交点的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A'B'C'D'及其内部的点,其中点AB的对应点分别为A',B'.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F'与点F重合,则点F的坐标是(  )

A. (1,4) B. (1,5) C. (﹣1,4) D. (4,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

1)如图1,求证:KE=GE

2)如图2,连接CABG,若∠FGB=ACH,求证:CAFE

3)如图3,在(2)的条件下,连接CGAB于点N,若sinE=AK=,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).

(1)求反比例函数的解析式及B点的坐标;

(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x0)的图象上,顶点B在函数y2=(x0)的图象上,ABO=30°,则=

查看答案和解析>>

同步练习册答案