精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1 , 再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2 , …,如此进行下去,得到四边形AnBnCnDn . 下列结论正确的有(
①四边形A2B2C2D2是矩形;
②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长是
④四边形AnBnCnDn的面积是

A.①②③
B.②③④
C.①②
D.②③

【答案】B
【解析】解:①连接A1C1 , B1D1 . ∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1 , A1B1∥C1D1
∴四边形A1B1C1D1是平行四边形;
∵AC丄BD,∴四边形A1B1C1D1是矩形,
∴B1D1=A1C1(矩形的两条对角线相等);
∴A2D2=C2D2=C2B2=B2A2(中位线定理),
∴四边形A2B2C2D2是菱形;
故本选项错误;②由①知,四边形A2B2C2D2是菱形;
∴根据中位线定理知,四边形A4B4C4D4是菱形;
故本选项正确;③根据中位线的性质易知,A5B5= A3B3= A1B1= AC,B5C5= B3C3= B1C1= BD,
∴四边形A5B5C5D5的周长是2× (a+b)=
故本选项正确;④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四边形ABCD=ab÷2;
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形AnBnCnDn的面积是
故本选项正确;
综上所述,②③④正确.
故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,OA=3,OC=2,点F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= 的图象与BC边交于点E.
(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EFA的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球的个数是白球个数的2倍少5个,已知从袋中摸出一个红球的概率是
(1)求袋中红球的个数;
(2)求从袋中摸出一个球是白球的概率;
(3)取走5个黄球5个白球,求从剩余的球中摸出一个球是红球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题正确的是(
A.一组对边相等,另一组对边平行的四边形一定是平行四边形
B.对角线相等的四边形一定是矩形
C.两条对角线互相垂直的四边形一定是菱形
D.两条对角线相等且互相垂直平分的四边形一定是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在三角形ABC中,点O是AC边上的一个动点,过点O做直线MN平行于BC,设MN∠BCA的平分线于点E,交∠BCA的外角平分线于点F.

(1)试说明:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知E是平行四边形ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.

(1)求证:△ABE≌△FCE;
(2)连接AC、BF,若AE= BC,求证:四边形ABFC为矩形;
(3)在(2)条件下,直接写出当△ABC再满足时,四边形ABFC为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】回答下面的例题:
解方程:x2﹣|x|﹣2=0.
解:①x≥0时,原方程化为x2﹣x﹣2=0,解得x1=2,x2=﹣1(不合题意,舍去).
②x<0时,原方程化为x2+x﹣2=0,解得x1=﹣2,x2=1(不合题意,舍去).
∴原方程的根是x1=2,x2=﹣2.
请参照例题解方程x2+|x﹣4|﹣8=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.

(1)分别求直线l1与x轴,直线l2与AB的交点坐标;
(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;
(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为

查看答案和解析>>

同步练习册答案