精英家教网 > 初中数学 > 题目详情

【题目】如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃设花圃的一边AB为xm,面积为ym2

(1)求y与x的函数关系式;

(2)如果要围成面积为63m2的花圃,AB的长是多少?

(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由

【答案】(1)y=-3x2+30x(2)AB的长为7m(3)最大面积为m2

【解析】

试题分析:本题利用矩形面积公式建立函数关系式,A:利用函数关系式在已知函数值的情况下,求自变量的值,由于是实际问题,自变量的值也要受到限制B:利用函数关系式求函数最大值

试题解析:(1)由题意得:

y=x(30-3x),即y=-3x2+30x

(2)当y=63时,-3x2+30x=63

解此方程得x1=7,x2=3

当x=7时,30-3x=9<10,符合题意;

当x=3时,30-3x=21>10,不符合题意,舍去;

当AB的长为7m时,花圃的面积为63m2

(3)能

y=-3x2+30x=-3(x-5)2+75

而由题意:0<30-3x≤10,

≤x<10

又当x>5时,y随x的增大而减小,

当x=m时面积最大,最大面积为m2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解方程

(1)

(2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点DRt△ABC斜边AB的中点,过点B、C分别作BE∥CD,CE∥BD.

(1)∠A=60°,AC=,求CD的长;

(2)求证:BC⊥DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解八年级学生的视力情况,对八年级学生进行了一次视力调查,并将调查结果进行统计整理,绘制了频数分布表和频数分布直方图的一部分.

1)在频数分布表中,a    b    

2)将频数分布直方图补充完整;

3)若将视力在4.6及以上的视力情况定义为“视力正常”,求“视力正常”的人数占被调查人数的百分比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形是一张矩形纸片,,把纸片对折,折痕为,展开后再过点折叠该纸片,使点落在上的点处,且折痕相交于点,再次展平后,连接,并延长于点

1)求证:是等边三角形;

2)求的长;

3为线段上一动点,的中点,则的最小值是    .(请直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠1∠2,则不一定能使△ABD≌△ACD的条件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交ABAC于点EF,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解下列方程:

(1)x2﹣3x=0; (2)x2﹣4x+2=0;

(3)x2﹣x﹣6=0; (4)(x+1)(x﹣2)=4﹣2x.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知中,厘米,厘米,点的中点.

1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1秒后,是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等, 是否可能全等?若能,求出全等时点Q的运动速度和时间;若不能,请说明理由.

2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?

查看答案和解析>>

同步练习册答案