精英家教网 > 初中数学 > 题目详情
某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.
(1)写出月销售利润y与售价x之间的函数关系式.
(2)销售单价定为55元时,计算月销售量与销售利润.
(3)当售价定为多少元时,会获得最大利润?求出最大利润.
考点:二次函数的应用
专题:
分析:(1)根据“销售单价每涨1元,月销售量就减少10千克”,可知:月销售量=500-(销售单价-50)×10.由此可得出售价为55元/千克时的月销售量,然后根据利润=每千克的利润×销售的数量来求出月销售利润;
(2)方法同(1)只不过将55元换成了x元,求的月销售利润变成了y;
(3)得出(2)的函数关系式后根据函数的性质即可得出函数的最值以及相应的自变量的值.
解答:解:(1)当销售单价定为每千克x元时,月销售量为:[500-(x-50)×10]千克.
每千克的销售利润是:(x-40)元,
所以月销售利润为:y=(x-40)[500-(x-50)×10]=(x-40)(1000-10x)=-10x2+1400x-40000,
∴y与x的函数解析式为:y=-10x2+1400x-40000;

(2)∵当销售单价定为每千克55元时,则销售单价每涨(55-50)元,少销售量是(55-40)×10千克,
∴月销售量为:500-(55-50)×10=450(千克),
所以月销售利润为:(55-40)×450=6750(元);

(3)由(2)的函数可知:y=-10(x-70)2+9000
因此:当x=70时,ymax=9000元,
即:当售价是70元时,利润最大为9000元.
点评:本题主要考查了二次函数的应用,能正确表示出月销售量是解题的关键.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

证明:[请写出规范、完整的证明格式]

①如图1,点C是AB的中点,AD=CE,CD=BE.求证:AD∥CE. 
②如图2,已知AB=AD,AC=AE,∠1=∠2,求证:△ABC≌△ADE.
③已知:如图3,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.
④如图4,在△ABC与△DEF中,如果AB=DE,BE=CF,∠ABC=∠DEF求证:△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

在数轴上把下列各数表示出来,并用“<”连接各数.
1
2
,|-2.5|,0,-12,+(-
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

m是方程x2+x-1=0的根,则式子m3+2m2+2014的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,用三角尺画出△ABC关于直线MN的轴对称图形.(不写作法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是拉线固定电线杆的示意图.点A、D、B在同一直线上.已知CD⊥AB,CD=3
3
m,∠CAD=∠CBD=60°,则拉线AC的长是
 
m.

查看答案和解析>>

科目:初中数学 来源: 题型:

在同一直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数且m≠0)的图象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a-b+c>1;③abc>0;④4a-2b+c<0;⑤c-a>1,其中所有正确结论的序号是(  )
A、①②③⑤B、①③④
C、①②③④D、①②③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

下列语句中,是命题的是(  )
A、两个锐角的和大于直角
B、在线段AB上任取一点
C、作∠A的平分线AM
D、两点确定一条直线吗

查看答案和解析>>

同步练习册答案