精英家教网 > 初中数学 > 题目详情

【题目】如图,P为反比例函数y= (x>0)图象上一点,过点P分别向x轴,y轴作垂线,垂足分别为M、N,直线y=﹣x+2PM、PN分别交于点E、F,与x轴、y轴分别交于A、B,则AFBE的值为________

【答案】3

【解析】

如图F点作FH⊥x轴于H,过E点作EG⊥y轴于G,由直线y=-x+2x轴、y轴分别交于A、B,可得△AOB是等腰直角三角形,继而可得△AFH也是等腰直角三角形,△BGE为等腰直角三角形,从而可得AF=PM,BE=PN,可得AF×BE =2PMPN,由点Py=上,可得PMPN=继而可求得AF×BE=2PMPN=3,问题得以解决.

如图,过F点作FH⊥x轴于H,过E点作EG⊥y轴于G,则有FH=PM,PN=EG,

∵直线y=-x+2x轴、y轴分别交于A、B,

∴A(2,0),B(0,2),

∴△AOB是等腰直角三角形,

∴△AFH也是等腰直角三角形,△BGE为等腰直角三角形,

∴AH=FH,BG=EG,

∴AF=FH=PM,BE==EG=PN,

∴AF×BE=PM×PN=2PMPN,

∵y=

∴PMPN=

∴AF×BE=2PMPN=2×=3,

故答案为:3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于点E,交BD于点H,EN∥DCBD于点N.下列结论:

①BH=DH;②CH=(+1)EH;③其中正确的是(  )

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l:y=kx和抛物线C:y=ax2+bx+1.

1k=1,b=1时,抛物线C:y=ax2+bx+1的顶点在直线l:y=kx上,求a的值;

2若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点;

(i)求此抛物线的解析式;

(ii)P是此抛物线上任一点,过点PPQy轴且与直线y=2交于点Q,O为原点,

求证:OP=PQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,点D在边BC上,连接AD,将线段AD绕点A逆时针旋转到AE,使得∠DAE=∠BAC,连接DE交AC于F,请写出图中一对相似的三角形:____(只要写出一对即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.

(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.

(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣x+4与反比例函数y=的图象相交于点A(﹣2,a),并且与x轴相交于点B.

(1)求a的值;

(2)求反比例函数的表达式;

(3)求AOB的面积;

(4)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面ABC如图2所示,BC=10米,∠ABC=ACB=36°,改建后顶点DBA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)

(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b(k<0)与反比例函数的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)

(1)求反比例函数的解析式;

(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有三张分别标有数字2,5,9的卡片,它们的背面都相同.现将它们背面朝上,从中任意抽出一张卡片,不放回,再从剩余的两张卡片里任意抽出一张.

(1)请用树状图或列表法表示出所有可能的结果.

(2)求两张卡片的数字之和为偶数的概率.

查看答案和解析>>

同步练习册答案