精英家教网 > 初中数学 > 题目详情

【题目】如图,在xOy中,已知点A(a1a+b)B(a0),且0Cx轴上B点右侧的动点,以AC为腰作等腰△ACD,使ADAC,∠CAD=∠OABDBy轴于点P

(1)AB两点坐标;

(2)求证:AOAB

(3)求证:∠OBP=∠OAB

【答案】(1)A(13)B(20)(2)证明见解析;(3)证明见解析

【解析】

1)先根据非负数的性质求出ab的值即可解决问题.

2)作AEOB于点E,利用线段的垂直平分线的性质即可解决问题.

3)利用全等三角形的性质以及三角形的内角和定理即可解决问题.

1)解:∵0

,解得

A13),B20),

2)证明:作AEOB于点E

A13),B20),

OE1BE211

OEEB,∵AEOB

AOAB

3)证明:∵∠CAD=∠OAB

∴∠CAD+BAC=∠OAB+BAC,即∠OAC=∠BAD

在△AOC与△ABD中,

∴△AOC≌△ABDSAS),

∴∠ABD=∠AOC=∠OBA

∵∠AOB+ABO+OAB180°,∠OBP+ABO+ABD180°,

∴∠OBP=∠OAB

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点.ABC的边BCx轴上,AC两点的坐标分别为A0m)、Cn0),B(﹣50),且,点PB出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.

1)求AC两点的坐标;

2)连接PA,用含t的代数式表示POA的面积;

3)当P在线段BO上运动时,是否存在一点P,使PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线轴交于点,与轴交于点,直线经过两点.

求抛物线的解析式;

上方的抛物线上有一动点

如图,当点运动到某位置时,以为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点的坐标;

如图,过点的直线于点,若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线与双曲线(k>0)交于A、B两点,点B的坐标为(﹣4,﹣2),C为双曲线(k>0)上一点,且在第一象限内,若△AOC的面积为6.

(1)求双曲线的解析式;

(2)求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,海面上甲、乙两船分别从A,B两处同时出发,由西向东行驶,甲船的速度为24n mile/h,乙船的速度为15n mile/h,出发时,测得乙船在甲船北偏东50°方向,且AB=10nmile,经过20分钟后,甲、乙两船分别到达C,D两处.

(参考值:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)

(1)求两条航线间的距离;

(2)若两船保持原来的速度和航向,还需要多少时间才能使两船的距离最短?(精确到0.01)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】夹在两条平行线间的正方形ABCD、等边三角形DEF如图所示,顶点A、F分别在两条平行线上.若A、D、F在一条直线上,则∠1与∠2的数量关系是(  )

A. 1+2=60° B. 2﹣1=30° C. 1=22. D. 1+22=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),

C(3,4)

⑴ 作出与△ABC关于y轴对称△A1B1C1,并写出 三个顶点的坐标为:A1 ),B1 ),C1 );

⑵ 在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标;

⑶ 在 y 轴上是否存在点 Q,使得SAOQ=SABC,如果存在,求出点 Q 的坐标,如果不存在,说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,,点开始沿折线的速度运动,点开始沿边以的速度移动,如果点分别从同时出发,当其中一点到达时,另一点也随之停止运动,设运动时间为,当________时,四边形也为矩形.

查看答案和解析>>

同步练习册答案