精英家教网 > 初中数学 > 题目详情

如图(12),已知∠BED=∠B+∠D,试说明AB与CD的关系。

 解:AB∥CD,理由如下:

  过点E作∠BEF=∠B 

∴AB∥EF(                      )

 ∵∠BED=∠B+∠D

 ∴∠FED=∠D

 ∴CD∥EF(                       )

 ∴AB∥CD(                       )


 解:AB∥CD,理由如下:

  过点E作∠BEF=∠B 

∴AB∥EF(内错角相等,两直线平行)

 ∵∠BED=∠B+∠D

 ∴∠FED=∠D

 ∴CD∥EF(内错角相等,两直线平行 )

 ∴AB∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)

  


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,已知菱形ABCD的边长为4,∠A=60°,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=60°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1

(1)求证:∠APE=∠CFP;

(2)设四边形CMPF的面积为S2,CF=x,

①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;

②当图中两块阴影部分图形关于点P成中心对称时,求y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知关于x的方程x2-(m+2)x+(2m-1)=0的一个根是2,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图3,PO⊥OR,OQ⊥PR,则点O到PR所在直线的距离是线段的长(    )

 A、PO     B、RO     C、OQ    D、PQ   

    

查看答案和解析>>

科目:初中数学 来源: 题型:


“两直线平行,同位角相等。”的题设是             ,结论是             

查看答案和解析>>

科目:初中数学 来源: 题型:


如图(17),点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA求证:∠FDE=∠A。(5分)

                                                    

查看答案和解析>>

科目:初中数学 来源: 题型:


两平行直线被第三条直线所截,同旁内角的平分线(    ) 

A.互相重合      B.互相平行     C.互相垂直       D.无法确定 

查看答案和解析>>

科目:初中数学 来源: 题型:


在如图20的方格纸上平移所给的火炬图案,使点A移到点A′的位置

 


查看答案和解析>>

科目:初中数学 来源: 题型:


如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是(    )。

A.点A   B.点B    C.点C    D.点D

查看答案和解析>>

同步练习册答案