精英家教网 > 初中数学 > 题目详情

【题目】已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.

(1)求证:AB=AC;
(2)若AB=4,BC=2 ,求CD的长.

【答案】
(1)

证明:∵ED=EC,

∴∠EDC=∠C,

∵∠EDC=∠B,

∴∠B=∠C,

∴AB=AC


(2)

解:连接AE,

∵AB为直径,

∴AE⊥BC,

由(1)知AB=AC,

∴BE=CE= BC=

∵CECB=CDCA,AC=AB=4,

2 =4CD,

∴CD=


【解析】(1)由等腰三角形的性质得到∠EDC=∠C,由圆外接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,由“三线合一”定理得到BE=CE= BC= ,由割线定理可证得结论.本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP

(1) 如图1,若OP=6,求m的值

(2) 如图2,点Cx轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC的中点D,连接AD、BD,求证:AD=BD

(3) 如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点Ex轴的距离不大于3,直接写出m的取值范围(无需解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.

(1)求A、B两点的坐标;

(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:

①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;

②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为( ,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分10分)

如图,在ABCD中,以点A为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.

(1)根据以上尺规作图的过程,求证四边形ABEF是菱形;

(2)若菱形ABEF的周长为16,AE=4,求C的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某科技馆对学生参观实行优惠,个人票为每张6元,另有团体票可售,票价45元,每票最多限10人入馆参观.

(1)如果参观的学生人数36人,至少应付多少元?

(2)如果参观的学生人数为48人,至少应付多少元?

(3)如果参观的学生人数为一个两位数(a表示十位上的数字,b表示个位上的数字),用含a、b的代数式表示至少应付给科技馆的总金额.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A=2x2+3xy﹣2x﹣1B=﹣x2+xy﹣1

1)求3A+6B

2)若3A+6B的值与x无关,求y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=-x+2x、y轴分别交于点A和点B,另一直线y=kx+b(k≠0)经过点C(1,0),且把△AOB分成两部分.

(1)△AOB被分成的两部分面积相等,kb的值;

(2)△AOB被分成的两部分面积比为1∶5,kb的值.

查看答案和解析>>

同步练习册答案