【题目】如图,抛物线
与
轴交于点
,
,把抛物线在
轴及其上方的部分记作
,将
向右平移得
,
与
轴交于点
,
,若直线
与
,
共有
个不同的交点,则
的取值范围是________.
![]()
【答案】![]()
【解析】
首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案.
令y=-2x2+8x-6=0,即x2-4x+3=0,解得x=1或x=3,则点A(1,0),B(3,0)由于C1向右平移两个长度单位得C2,则C2解析式为y=-2(x-4)2+2(3≤x≤5),当y=x+m1与C2相切时,令y=x+m1=y=-2(x-4)2+2,即2x2-15x+30+m1=0,△=-8m1-15=0,解得m1=-
,当y=x+m2过点B时,即0=3+m2,m2=-3,当-3<m<-
时直线y=x+m与C1、C2共有3个不同交点,故答案是-3<m<-
.
科目:初中数学 来源: 题型:
【题目】若一个三位数满足条件:其十位数字是百位数字的两倍与个位数字的差,则称这样的三位数为“十全数”,将“十全数”s的百位数字与十位数字交换位置,交换后所得的新数叫做s的“十美数”,如231是一个“十全数”,321是231的“十美数”
(1)证明:任意一个“十全数”s的“十美数”都能被3整除;
(2)已知m为“十全数”,n是m的“十美数”,若m的两倍与n的差能被13整除,求m的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BCAD=
AE2;④S△ABC=4S△ADF.其中正确的个数有( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠2,则下列条件中不一定能使△ABC≌△ABD的是( )
![]()
A. AC=AD B. BC=BD C. ∠C=∠D D. ∠3=∠4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜。
(1)当X=3时,谁获胜的可能性大?
(2)当x为何值时,游戏对双方是公平的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在
中,
,
,
,动点
从点
出发,以每秒
个单位的速度沿
方向向终点
运动;同时,动点
也从点
出发,以每秒
个单位的速度沿
方向向终点
运动.设两点运动的时间为
秒
.
连接
,在点
、
运动过程中,
与
是否始终相似?请说明理由;
连接
,设
的面积为
,求
关于
的函数关系式;
连接
、
,是否存在
的值,使
?若存在,求出
的值;若不存在,请说明理由;
探索:把
沿直线
折叠成
,设
与
交于点
,当
是直角三角形时,请直接写出
的值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)
(1)画出格点△ABC关于直线DE的对称的△A1B1C1;
(2)在DE上画出点P,使PA+PC最小;
(3)在DE上画出点Q,使QA﹣QB最大.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b'),给出如下定义:
若b'=
,则称点Q为点P的限变点.例如:点(3,﹣2)的限变点的坐标是(3,﹣2),点(﹣1,5)的限变点的坐标是(﹣1,﹣5).
(1)①点(﹣
,1)的限变点的坐标是 ;
②在点A(﹣1,2),B(﹣2,﹣1)中有一个点是函数y=
图象上某一个点的限交点,这个点是 ;
(2)若点P在函数y=﹣x+3的图象上,当﹣2≤x≤6时,求其限变点Q的纵坐标b'的取值范围;
(3)若点P在关于x的二次函数y=x2﹣2tx+t2+t的图象上,其限变点Q的纵坐标b'的取值范围是b'≥m或b'<n,其中m>n.令s=m﹣n,求s关于t的函数解析式及s的取值范围.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com