精英家教网 > 初中数学 > 题目详情
8.在《九章算术》中记载了一道有趣的数学题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”这道题的意思是说:有一个边长为一丈的正方形水池,在池的正中央长着一根芦苇,芦苇露出水面一尺,若将芦苇拉到池边中点处,芦苇的顶端恰好与水面齐平,问水有多深?,芦苇有多长(1丈=10尺)?请你解决这个问题.

分析 找到题中的直角三角形,设水深为x尺,根据勾股定理可得x2+($\frac{10}{2}$)2=(x+1)2,再解答即可.

解答 解;设水深为x尺,则芦苇长为(x+1)尺,
根据勾股定理得:x2+($\frac{10}{2}$)2=(x+1)2
解得:x=12,
芦苇的长度=x+1=12+1=13(尺),
答:水池深12尺,芦苇长13尺.

点评 此题主要考查了勾股定理得应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.在直角坐标系中,点P(-3,2)关于x轴对称的点Q的坐标是(-3,-2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品的单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.并求怎样购买使费用最少,最少费用是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.小明去超市买三种商品.其中丙商品单价最高.如果购买3件甲商品、2件乙商品和1件丙商品,那么需要付费20元,如果购买4件甲商品,3件乙商品和2件丙商品,那么需要付费32元.
(1)如果购买三种商品各1件,那么需要付费多少元?
(2)如果需要购买1件甲商品,3件乙商品和2件丙商品,那么小明至少需多少钱才能保证一定能全部买到?(结果精确到元)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.目前,全国初中数学竞赛获奖情况已揭晓,现已知某校获国家级奖和省奖的人数共有24人,具体情况不详,请你设计必要的情景,编写一道二元一次方程组的应用题,并根据设计的情景求出获国家奖和省奖的人数各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,直线y=x+4与坐标轴交于点A、B,点C(-3,m)在直线AB上,在y轴上找一点P,使PA+PC的值最小,求这个最小值及点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.若a>b,则下列不等式一定成立的是(  )
A.a-b<0B.$\frac{a}{3}$<$\frac{b}{3}$C.-a>-bD.-a+1<-b+1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:
(1)本次调查共抽查了120名学生,两幅统计图中的m=48,n=15.
(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?
(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解不等式:$\frac{x+1}{2}$+$\frac{2}{x+2}$+$\frac{x-1}{3}$>1+$\frac{2}{x+2}$.

查看答案和解析>>

同步练习册答案