【题目】如图,已知⊙O的直径为10,点A、B、C在⊙O上,∠CAB的平分线交⊙O于点D.
(1)图①,当BC为⊙O的直径时,求BD的长;
(2)图②,当BD=5时,求∠CDB的度数.
【答案】(1);(2)120°.
【解析】分析;(1)连接CD,只要证明△ABD是等腰三角形是解题关键;(2)首先证明△OBD是等边三角形,推出∠BOD=60°,由,推出∠ACD=∠BAD=30°,推出∠BAC=60°,再利用圆内接四边形的性质即可解决问题.
本题解析:
解:(1)连接CD
∵∠CAB的平分线交⊙O于点D,∴∠CAD=∠DAB;
∴=
∴CD=DB
∵BC为⊙O的直径
∴∠CDB=90°
在Rt△CDB中,CD2+BD2=BC2
∴BD =5 .
(2)连接OB、OD
∵⊙O直径为10,∴ OB=OD=5
∵BD=5
∴ OB=OD= BD
∴ △BOD为等边三角形
∴ ∠BOD=60°
∵=
∴∠ACD=∠BAD=30°
∴∠BAC=60°
∵四边形ABDC是⊙O的内接四边形
∴∠CDB=180°﹣∠BAC =120°
科目:初中数学 来源: 题型:
【题目】解方程:
①的解x= .
②的解x= .
③的解x= .
④的解x= .
…
(1)根据你发现的规律直接写出⑤,⑥个方程及它们的解.
(2)请你用一个含正整数n的式子表示上述规律,并求出它的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE∥AC交CB的延长线于E.
(1)求证:DE是⊙O的切线;
(2)若∠A=30°,求证:BD=BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD//EF,∠1+∠2=180°,
(1)若∠1=50°,求∠BAD的度数;
(2)若DG⊥AC,垂足为G,∠BAC=90°,试说明:DG平分∠ADC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,,点B在x轴上,且.
求点B的坐标;
求的面积;
在y轴上是否存在P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM相等的角(不含它本身)的个数为( ).
A. 7B. 6C. 5D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系中,在边长为1的正方形网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,1),B(2,3).
(1)请在图中画出△AOB关于y轴的对称△A′OB′,点A′的坐标为 ,点B′的坐标为 ;
(2)请写出A′点关于x轴的对称点A′'的坐标为 ;
(3)求△A′OB′的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P从出发,沿所示方向运动,每当碰到长方形OABC的边时会进行反弹,反弹时反射角等于入射角,当点P第2018次碰到长方形的边时,点P的坐标为______.
【答案】
【解析】
根据反射角与入射角的定义作出图形;由图可知,每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.
解:如图所示:经过6次反弹后动点回到出发点,
,
当点P第2018次碰到矩形的边时为第337个循环组的第2次反弹,
点P的坐标为.
故答案为:.
【点睛】
此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.
【题型】填空题
【结束】
15
【题目】为了保护环境,某公交公司决定购买A、B两种型号的全新混合动力公交车共10辆,其中A种型号每辆价格为a万元,每年节省油量为万升;B种型号每辆价格为b万元,每年节省油量为万升:经调查,购买一辆A型车比购买一辆B型车多20万元,购买2辆A型车比购买3辆B型车少60万元.
请求出a和b;
若购买这批混合动力公交车每年能节省万升汽油,求购买这批混合动力公交车需要多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com