精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=﹣ x2+ x+3 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).

(1)求直线BC的函数表达式;
(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)
②在点P、Q运动的过程中,当PQ=PD时,求t的值;
(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.

【答案】
(1)

解:由y=0得﹣ x2+ x+3 =0,

解得:x1=﹣3,x2=9,

∴B(9,0),

由x=0得y=3

∴C(0,3 ),

设直线BC的解析式为y=kx+b,∴

∴直线BC的解析式为y=﹣ x+3


(2)

解:①过p作PG⊥x轴于G,

∵A(﹣3,0),C(0,3 ),

∴OA=3.OC=3

∴tan∠CAO=

∴∠CAO=60°,

∵AP=t,

∴PG= t,AG= t,

∴OG=3﹣ t,

∴P( t﹣3, t),

∵DQ⊥x轴,BQ=2t,

∴OQ=9﹣2t,

∴D(9﹣2t,﹣ t2+ t),

②过P作PH⊥QD于H,

则四边形PGQH是矩形,

∴HQ=PG,∵PQ=PD,PH⊥QD,∴DQ=2HQ=2PG,∵P( t﹣3, t),D(9﹣2t,﹣ t2+ t),

∴﹣ t2+ t=2× t,

解得:t1=0(舍去),t2= ,∴当PQ=PD时,t的值是


(3)

解:∵点F为PD的中点,

∴F的横坐标为: t﹣3+9﹣2t)=﹣ t+3,F的纵坐标为 t﹣ t2+ t)=﹣ t2+ t,

∴F(﹣ t+3,﹣ t2+ t),

∵点F在直线BC上,

∴﹣ t2+ t=﹣ (﹣ t+3)+3

∴t=3,

∴F(


【解析】(1)更好函数的解析式得到B(9,0),C(0,3 ),解方程组即可得到结论;(2)①过p作PG⊥x轴于G,解直角三角形得到∠CAO=60°,得到PG= t,AG= t,于是得到P( t﹣3, t),把OQ=9﹣2t代入二次函数的解析式即可得到D(9﹣2t,﹣ t2+ t),②过P作PH⊥QD于H,得到四边形PGQH是矩形,列方程即可得到即可;(3)根据折叠坐标公式得到F(﹣ t+3,﹣ t2+ t),由点F在直线BC上,列方程即可得到结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图它表示甲乙两人从同一个地点出发后的情况根据图像判断下列说法错误的是()

A. 甲是 8 点出发的

B. 乙是 9 点出发的,到 10 点时他大约走了 10 千米

C. 10 点为止乙的速度快

D. 两人在 12 点再次相遇

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:

苗苗的画法:

①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;

②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b//a.

小华的画法:

①将含30°角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线;

②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b,则b//a.

请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.

答:我喜欢__________同学的画法,画图的依据是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O. 求证:OE=OF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中点A ),B20),C为线段OB上一个动点,以AC为腰作等腰直角ACD,且AC=AD

(1)△AOB的面积;

(2)证明:OC2+CB2=CD2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小刚在课外书中看到这样一道有理数的混合运算题:

计算:

她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,他顺利地解答了这道题。

(1)前后两部分之间存在着什么关系?

(2)先计算哪步分比较简便?并请计算比较简便的那部分。

(3)利用(1)中的关系,直接写出另一部分的结果。

(4)根据以上分析,求出原式的结果。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列四项调查中,方式正确的是  

A. 了解本市中学生每天学习所用的时间,采用全面调查的方式

B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式

C. 了解某市每天的流动人口数,采用全面调查的方式

D. 了解全市中学生的视力情况,采用抽样调查的方式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为( )

A. 21 B. 15 C. 9 D. 9或21

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2 为边长的正方形DEFG的一边GD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案