【题目】如图,G是正六边形ABCDEF的边CD的中点,连接AG交CE于点M,则GM:MA=______.
【答案】1:6.
【解析】
延长CE交AF的延长线于H,延长DE交AF延长线于L,根据正六边形的内角和定理可求出各内角的度数,利用平角的性质及等边三角形的性质可求出△FEL是等边三角形;再根据AAS定理求出△CDE≌△HLE,可得出AF=FL=HL,再利用AF∥CD可得△CGM∽△HAM,由三角形的相似比即可求解.
延长CE交AF的延长线于H,延长DE交AF延长线于L;
∵∠AFE=∠FED=∠CDE==120°,
∴∠LFE=∠FEL=180°-120°=60°,
∴AF=EF=FL=EL;
∵∠HLE是△EFL的外角,
∴∠HLE=∠LFE+∠FEL=120°,
∴∠HLE=∠CDE;
∵∠CED=∠FEH,DE=EL,
∴△CDE≌△HLE,
∴CD=HL,
∴AH=3AF=3CD;
∵G是CD的中点,即CG=CD,
∴CG:AH=:3=1:6.
∵AF∥CD,
∴△CGM∽△HAM,GM:AM=CG:AH=:3=1:6.
故答案为:1:6.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c经过点A(5,)、点B(9,﹣10),与y轴交于点C,点P是直线AC上方抛物线上的一个动点;
(1)求抛物线对应的函数解析式;
(2)过点P且与y轴平行的直线l与直线BC交于点E,当四边形AECP的面积最大时,求点P的坐标;
(3)当∠PCB=90°时,作∠PCB的角平分线,交抛物线于点F.
①求点P和点F的坐标;
②在直线CF上是否存在点Q,使得以F、P、Q为顶点的三角形与△BCF相似,若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是边AC上一点,若AE=2,则EM+CM的最小值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x+bx+c 与y轴相交于点 A(0,3),与x正半轴相交于点B,对称轴是直线 x=1
(1)求此抛物线的解析式以及点B的坐标.
(2)动点M 从点 O 出发,以每秒2个单位长度的速度沿 x 轴正方向运动,同时动点 N 从点O出发,以每秒 3 个单位长度的速度沿y 轴正方向运动,当N点到达 A 点时,M、N同时停止运动.过动点 M 作 x 轴的垂线交线段 AB 于点Q,交抛物线于点 P,设运动的时间为 t 秒.
①当 t 为何值时,四边形 OMPN 为矩形.
②当 t>0 时,△BOQ 能否为等腰三角形?若能,求出 t 的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)D,F两点间的距离是 ;
(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;
(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;
(4)连结PG,当PG∥AB时,请直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,的所对边分别是,且,若满足,则称为奇异三角形,例如等边三角形就是奇异三角形.
(1)若,判断是否为奇异三角形,并说明理由;
(2)若,,求的长;
(3)如图2,在奇异三角形中,,点是边上的中点,连结,将分割成2个三角形,其中是奇异三角形,是以为底的等腰三角形,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解方程:(1) ; (2).
【答案】(1)x1 =1 ,x2=; (2) x1 =-1,x2= .
【解析】试题分析:
根据两方程的特点,使用“因式分解法”解两方程即可.
试题解析:
(1)原方程可化为: ,
方程左边分解因式得: ,
或,
解得: , .
(2)原方程可化为: ,即,
∴,
∴或,
解得: .
【题型】解答题
【结束】
20
【题目】已知x1,x2是关于x的一元二次方程x2-2(m+1)x+m2+5=0的两实根.
(1)若(x1-1)(x2-1)=28,求m的值;
(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校统筹安排大课间体育活动,在各班随机选取了一部分学生,分成四类活动:“跳绳”、“羽毛球”、“乒乓球”、“其他”进行调查,整理收集到的数据,绘制成如图的两幅统计图.
(1)学校采用的调查方式是 ;学校在各班随机选取了 名学生;
(2)补全统计图中的数据:羽毛球 人、乒乓球 人、其他 %;
(3)该校共有900名学生,请估计喜欢“跳绳”的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com