分析 (1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=$\frac{1}{2}$∠BCD,∠EAD=∠EAB=$\frac{1}{2}$∠BAD,则可得∠E=$\frac{1}{2}$(∠D+∠B),继而求得答案;
(2)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=$\frac{1}{2}$∠BCD,∠EAD=∠EAB=$\frac{1}{2}$∠BAD,则可得∠E=$\frac{1}{2}$(∠D+∠B),继而求得答案;
(3)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案.
解答 解:(1)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=$\frac{1}{2}$∠BCD,∠EAD=∠EAB=$\frac{1}{2}$∠BAD,
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB
∴∠D+∠B=2∠E,
∴∠E=$\frac{1}{2}$(∠D+∠B),
∵∠ADC=40°,∠ABC=30°,
∴∠AEC=$\frac{1}{2}$×(40°+30°)=35°;
(2)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=$\frac{1}{2}$∠BCD,∠EAD=∠EAB=$\frac{1}{2}$∠BAD,
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB![]()
∴∠D+∠B=2∠E,
∴∠E=$\frac{1}{2}$(∠D+∠B),
∵∠ADC=m°,∠ABC=n°,
∴∠AEC=$\frac{m°+n°}{2}$;
∵∠E=$\frac{1}{2}$(∠D+∠B),∠B:∠D:∠E=2:4:x,
∴x=$\frac{1}{2}$(2+4)=3;
(3)延长BC交AD于点F,
∵∠BFD=∠B+∠BAD,
∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,
∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=$\frac{1}{2}$∠BCD,∠EAD=∠EAB=$\frac{1}{2}$∠BAD,
∵∠E+∠ECB=∠B+∠EAB,
∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-$\frac{1}{2}$∠BCD=∠B+∠BAE-$\frac{1}{2}$(∠B+∠BAD+∠D)=$\frac{1}{2}$(∠B-∠D),
即∠AEC=$\frac{∠ABC-∠ADC}{2}$.
点评 此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义掌握角平分线的性质和等量代换是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1.5×200}{x}$-$\frac{240}{x}$=4 | B. | $\frac{240}{1.5x}$-$\frac{200}{4}$=4 | ||
| C. | $\frac{200}{x}$-$\frac{240}{1.5x}$=4 | D. | $\frac{1.5x+200}{x+4}$=$\frac{240}{x}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com