精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点

求一次函数和反比例函数的表达式;

请直接写出时,x的取值范围;

过点B轴,于点D,点C是直线BE上一点,若,求点C的坐标.

【答案】反比例函数的解析式为,一次函数解析式为:时,当点C的坐标为时,

【解析】

(1)利用待定系数法求出k,求出点B的坐标,再利用待定系数法求出一次函数解析式;

(2)利用数形结合思想,观察直线在双曲线上方的情况即可进行解答;

(3)根据直角三角形的性质得到∠DAC=30°,根据正切的定义求出CD,分点C在点D的左侧、点C在点D的右侧两种情况解答.

在反比例函数的图象上,

反比例函数的解析式为

在反比例函数的图象上,

则点B的坐标为

由题意得,

解得,

则一次函数解析式为:

由函数图象可知,当时,

由题意得,

中,,即

解得,

当点C在点D的左侧时,点C的坐标为

当点C在点D的右侧时,点C的坐标为

当点C的坐标为时,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1中,,将扇形按图1摆放,使扇形的半径分别与重合,

     

如图2,若不动,让扇形绕点逆时针旋转一周,连接线段,设旋转角为

发现:直接写出的数量关系.

探究:若

1)扇形绕到点的左侧,当时,旋转角______°;

2)扇形绕到点的右侧,当相切时,求

3)若点是弧上任意一点,在扇形绕点逆时针转过程中,当的面积最大时,直接写出的度数;

延伸:如图3,若,当三点共线时,直接写出线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,于点,为了研究图中线段之间的关系,设

1)可通过证明,得到关于的函数表达式__________,其中自变量的取值范围是___________

2)根据图中给出的(1)中函数图象上的点,画出该函数的图象;

3)借助函数图象,回答下列问题:①的最小值是__________;②已知当时,的形状与大小唯一确定,借助函数图象给出的一个估计值(精确到0.1)或者借助计算给出的精确值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表

第一次

第二次

第三次

第四次

第五次

第六交

9

8

6

7

8

10

8

7

9

7

8

8

对他们的训练成绩作如下分析,其中说法正确的是(  )

A. 他们训练成绩的平均数相同 B. 他们训练成绩的中位数不同

C. 他们训练成绩的众数不同 D. 他们训练成绩的方差不同

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,OACABD的面积之和为,则k的值为(

A. 4 B. 3 C. 2 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,分别过点,轴的垂线 ,探究直线与双曲线 的关系,下列结论中错误的是

A.两直线中总有一条与双曲线相交

B.=1时,两条直线与双曲线的交点到原点的距离相等

C. 时,两条直线与双曲线的交点在轴两侧

D.当两直线与双曲线都有交点时,这两交点的最短距离是2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了让学生了解环保知识,增强环保意识,红星中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:

(1)填充频率分布表中的空格;

(2)补全频率分布直方图;

(3)在该问题中的样本容量是多少?

答:              

(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)”

答:              

(5)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?

答:              

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“每天锻炼一小时,健康生活一辈子”为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的名领操员进行比赛,成绩如下表:

成绩(分)

人数(人)

1)这组数据的众数是______,中位数是_______;

2)已知获得分的选手中,七、八、九年级分别有人、人、人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=30°∠C=45°AD平分∠BACBC于点DDE⊥AB,垂足为E。若DE=1,则BC的长为(

A.2+B.C.D.3

查看答案和解析>>

同步练习册答案