【题目】如图,在中,,于点,,为了研究图中线段之间的关系,设,,
(1)可通过证明,得到关于的函数表达式__________,其中自变量的取值范围是___________;
(2)根据图中给出的(1)中函数图象上的点,画出该函数的图象;
(3)借助函数图象,回答下列问题:①的最小值是__________;②已知当时,的形状与大小唯一确定,借助函数图象给出的一个估计值(精确到0.1)或者借助计算给出的精确值.
【答案】(1),x>1;(2)见解析;(3)k≈6.5或k≈-0.5
【解析】
(1)利用相似边之间的关系,可求得x、y之间的关系,结合实际情况,AD>0可得到x的取值范围;
(2)描点绘制函数曲线;
(3)①直接读图可得到;
(3)②△ABC的形状要想唯一,则当k为某一个值时,x、y的值必须为唯一值.x是y的函数,只要x的值唯一,则y的值必定唯一.故只需要将k代入求解,使得x的值为唯一即可
(1)∵∠ACB=90°,CD⊥AB
∴∠A+∠ACD=90°,∠ACD+∠DCB=90°
∴∠A=∠DCB
∵∠ADC=∠CDB=90°
∴△ACD∽△CBD
∵CD-AD=1,CD=x,∴AD=x-1
∴,代入化简得:y=
∵AD>0,∴x-1>0,x>1
(2)连接这些点,绘制函数图形如下:
(3)①,由第(2)问的图形可得,y的最小值为4;
(3)②∵AB+CD=k,∴x-1+y+x=k
∵y=,代入得:2x-1+=k,化简得:
∵要使△ABC的图形唯一,则需要使得x、y的值唯一
∴上述以x为未知数的一元二次方程的有一个解
∴△=,化简得:
解得:k=3±
∴k≈6.5或k≈-0.5
科目:初中数学 来源: 题型:
【题目】某中学对本校2018届500名学生的中考体育测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图(图①,图②),请根据统计图提供的信息,解答下列问题:
(1)该校毕业生中男生有 人;扇形统计图中 ;500名学生中中考体育测试成绩的中位数是 ;
(2)补全条形统计图;
(3)从500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B,
(1)求证:AD是⊙O的切线.
(2)若BC=8,tanB=,求⊙O 的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF =∠BAE.
(1)求证:四边形AEFD是平行四边形;
(2)若DF=3,DE=4,AD=5,求CD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在喷水池的中心处竖直安装一根水管,水管的顶端安有一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高点,高度为3m,水柱落地点离池中心处3m,以水平方向为轴,建立平面直角坐标系,若选取点为坐标原点时的抛物线的表达式为,则选取点为坐标原点时的抛物线表达式为______,其中自变量的取值范围是______,水管的长为______m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,点O是对角线AC的中点,过点O作AC的垂线,分别交AD、BC于点E、F,连接AF、CE.试判断四边形AECF的形状,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.
求一次函数和反比例函数的表达式;
请直接写出时,x的取值范围;
过点B作轴,于点D,点C是直线BE上一点,若,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AB=AC,点P为线段AC上一点,点Q在线段AB的延长线上,CP=BQ,连接PQ交BC于点D,点P关于BC的对称点为E,连接AE.
(1)依题意补全图1;
(2)求证:D是PQ的中点;
(3)用等式表示AE和PQ的数量关系,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com