【题目】在平面直角坐标系中,已知点,,,其中,以点为顶点的平行四边形有三个,记第四个顶点分别为,如图所示.
(1)若,则点的坐标分别是( ),( ),( );
(2)是否存在点,使得点在同一条抛物线上?若存在,求出点的坐标;若不存在,说明理由.
【答案】(1)(-3,3),(1,3),(-3,-1)(2)不存在
【解析】分析: (1)根据平行四边形对边相等的性质即可得到点的坐标.
(2)不存在. 假设满足条件的C点存在,即A,B,,,在同一条抛物线上,则线段AB的垂直平分线即为这条抛物线的对称轴,而,在直线上,则 的中点C也在抛物线对称轴上,故,即点C的坐标为(-2,n). 而,在直线上,则 的中点C也在抛物线对称轴上,故,即点C的坐标为(-2,n).根据为抛物线的顶点.设出抛物线的方程,把点B的坐标代入得.把点的坐标代入得到,与矛盾. 所以不存在满足条件的C点.
(1)(-3,3),(1,3),(-3,-1)
(2)不存在. 理由如下:
假设满足条件的C点存在,即A,B,,,在同一条抛物线上,则线段AB的垂直平分线即为这条抛物线的对称轴,而,在直线上,则 的中点C也在抛物线对称轴上,故,即点C的坐标为(-2,n).
由题意得:(-4,n),(0,n),(-2,).
注意到在抛物线的对称轴上,故为抛物线的顶点. 设抛物线的表达式是.
当时,,代入得.
所以.
令,得,解得,与矛盾.
所以不存在满足条件的C点.
科目:初中数学 来源: 题型:
【题目】2017年12月,乙型,甲型H3N2和甲型H1N1三种禽流感病毒共同发威,造成流感在某市迅速蔓延,下面是该市确诊流感患者的统计图:
(1)在12月18日,该市被确诊的流感患者中多少乙型流感患者?
(2)在12月17日至21日这5天中,该市平均每天新增流感确诊病例多少人?如果接下来的5天中继续按这个平均数增加,那么到12月26日,该市流感累计确诊病例将会达到多少人?
(3)某地因1人患了流感没有及时隔离治疗,经过两天传染后共有9人患了流感,每天传染中平均一个人传染了几个人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+2x+3与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).
(1)写出D的坐标和直线l的解析式;
(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;
(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】补全下面的解题过程:
如图,已知OC是∠AOB内部的一条射线,OD是∠AOB的平分线,∠AOC=2∠BOC且∠BOC=40°,求∠COD的度数.
解:因为∠AOC=2∠BOC,∠BOC=40°,所以∠AOC=_____°,所以∠AOB=∠AOC+∠_____=_____°.
因为OD平分∠AOB,所以∠AOD=∠_____=_____°,所以∠COD=∠_____﹣∠AOD=_____°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上,点O为原点,点A表示的数为10,动点B、C在数轴上移动,且总保持BC=3(点C在点B右侧),设点B表示的数为m.
(1)如图1,若B为OA中点,则AC= ,点C表示的数是 ;
(2)若B、C都在线段OA上,且AC=2OB,求此时m的值;
(3)当线段BC沿射线AO方向移动时,若存在AC﹣OB=AB,求满足条件的m值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对某一个函数给出如下定义:若存在实数,对于函数图象上横坐标之差为1的任意两点,,都成立,则称这个函数是限减函数,在所有满足条件的中,其最大值称为这个函数的限减系数.例如,函数,当取值和时,函数值分别为,,故,因此函数是限减函数,它的限减系数为.
(1)写出函数的限减系数;
(2),已知()是限减函数,且限减系数,求的取值范围.
(3)已知函数的图象上一点,过点作直线垂直于轴,将函数的图象在点右侧的部分关于直线翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数,直接写出点横坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,P为对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F,连接CE.
(1)求证:△PCE是等腰直角三角形;
(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,判断△PCE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,点A,点C分别在x轴和y轴上,点B(1,2).抛物线y=ax2+bx+c经过点A、C,交BC延长线于D,与x轴另一个交点为E,且AE=4.
(1)求抛物线的表达式;
(2)点P是直线OD上方抛物线上的一个动点,PF∥y轴,PQ⊥OD,垂足为Q.
①猜想:PQ与FQ的数量关系,并证明你的猜想;
②设PQ的长为,点P的横坐标为m,求与m的函数表达式,并求的最大值;
(3)如果M是抛物线对称轴上一点,在抛物线上是否存在一点N,使得以M、N、C、E为顶点的四边形是平行四边形?若存在,直接写出N点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中, M为BC边上的中点, D是射线AM上的一个动点,以CD为一边且在CD的下方作等边△CDE,连接BE.
(1)填空:若D与M重合时(如图1)∠CBE= 度;
(2)如图2,当点D在线段AM上时(点D不与A、M重合),请判断(1)中结论是否成立?并说明理由;
(3)在(2)的条件下,如图3,若点P、Q在BE的延长线上,且CP=CQ=4,AB=6,试求PQ的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com