【题目】在中,,,点在边上,点在边上(点、点不与所在线段端点重合),,连接,.射线,延长交射线于点,点在直线上,且.
(1)如图1所示,点在的延长线上,求的度数.
(2)若,其它条件不变,当点在的延长线上时,______;当点在的延长线上时,______.(用含的代数式表示)
【答案】(1)120o;(2)180o-,
【解析】
(1)先证明△ABE≌△ACD得到∠AEB=∠ADC,再由平行线的性质得到∠A=∠ECM,∠ADC+∠ACD+∠ECM=180o,∠ADC=∠MCN,综合可得∠EMN=∠ACD+∠ADC,再根据三角形内角和即可求得;
(2) 当点在的延长线上时,求解方法与(1)相同;当点在的延长线上时,与(1)方法相同先证明∠ACD=∠EMC,再由可得∠ACD+∠ECM=∠NME+∠EMC,再代相等的量代入即可得到∠NME=∠A,即可求得.
(1)∵,,
∴AD=AE,
在△ABE和△ACD中
,
∴△ABE≌△ACD(SAS),
∴∠AEB=∠ADC,
又∵∠AEB=∠MEC(对顶角相等),
∴∠ADC=∠MEC,
∵CF//AB,∠ADC=∠MCN,
∴∠A=∠ECM,∠ADC+∠ACD+∠ECM=180o, ∠ADC=∠MCN,
又∵∠EMC+∠ECM+∠MEC=180o(三角形内角和为180o),
∴∠ADC+∠ACD=∠EMC+∠MEC,
又∵∠ADC=∠MEC(已证),
∴∠ACD=∠EMC,
又∵MN=CN,
∴∠NCM=∠NMC,
又∵∠ADC=∠MCN(已证),
∴∠ADC=∠NMC,
又∵∠ACD=∠EMC,∠EMN=∠ECM+∠NMC,
∴∠EMN=∠ACD+∠ADC,
在△ACD中,∠ACD+∠ADC+∠A=180o,
∴∠EMN=∠ACD+∠ADC=180o-∠A,
又∵∠A=60o,
∴∠EMN=180o-60o=120o.即∠BMN=120o;
(2) 当点在的延长线上时,如图1所示:由(1)得∠EMN=180o-∠A,
又∵,
∴∠EMN=180o-,即∠BMN=180o-;
当点在的延长线上时,如图所示:
由(1)可得∠ACD=∠EMC,
∵CF//AB,
∴∠A=∠ECM,
∵NC=MN,
∴∠NCM=∠NMC,
又∵∠NCM=∠ACD+∠ECM,∠NMC=∠NME+∠EMC,
∴∠ACD+∠ECM=∠NME+∠EMC,
∴∠ECM=∠NME,
又∵∠A=∠ECM,
∴∠NME=∠A,
又∵∠A=a,
∴∠NME=a,即∠BMN=a.
科目:初中数学 来源: 题型:
【题目】甲袋里装有红球5个,白球2个和黑球12个,乙袋里装有红球20个,白球20个和黑球10个.
(1)如果你想取出1个黑球,选哪个袋子成功的机会大?请说明理由.
(2)某同学说“从乙袋取出10个红球后,乙袋中的红球个数仍比甲袋中红球个数多,所以此时想取出1个红球,选乙袋成功的机会大.”你认为此说法正确吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为点G,连接CG,下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值﹣1.其中正确的说法有( )个.
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知直线,被直线所截,,是平面内任意一点(点不在直线,,上),设,.下列各式:①;②;③;④;⑤,的度数可能是( )
A. ①②③④B. ①②④⑤
C. ①②③⑤D. ①②③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里装有红、黑两种颜色的球共30只,这些球除颜色外其余完全相同,为了估计红球和黑球的个数,七(1)班的数学学习小组做了摸球实验.他们将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到下表中的一组统计数据:
模球的次数 | 50 | 100 | 300 | 500 | 800 | 1000 | 2000 |
摸到红球的次数 | 14 | 33 | 95 | 155 | 241 | 298 | 602 |
摸到红球的频率 | 0.28 | 0.33 | 0.317 | 0.31 | 0.301 | 0.298 | 0.301 |
(1)请估计:当次数足够大时,摸到红球的频率将会接近______;(精确到0.1)
(2)假如你去摸一次,则估计摸到红球的概率为______;
(3)试估算盒子里红球的数量为______个,黑球的数量为______个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.
(1)甲、乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是某同学用换元法对多项式进行因式分解的过程.
解:设
原式(第一步)
(第二步)
(第三步)
(第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的__________(填代号).
A.提取公因式 B.平方差公式
C.两数和的完全平方公式 D.两数差的完全平方公式
(2)按照“因式分解,必须进行到每一个多项式因式都不能再分解为止”的要求,该多项式分解因式的最后结果为______________.
(3)请你模仿以上方法对多项式进行因式分解.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com