5£®Èçͼ£®µãA£¬BÔÚÆ½ÃæÖ±½Ç×ø±êϵÖеÄ×ø±ê·Ö±ðΪ£¨0£¬2£©£¬£¨a£¬4£©£¬¶¯µãP´ÓµãA³ö·¢£¬ÑØyÖáÒÔÿÃë1¸öµ¥Î»³¤µÄËÙ¶ÈÏòÉÏÒÆ¶¯£¬¹ýµãPµÄÖ±Ïßl£ºy=-2x+mÓë¹ýµãBÇÒÆ½ÐÐÓÚxÖáµÄÖ±Ïß½»ÓÚµãM£¬ÓëxÖá½»ÓÚµãN£¬ÉèÒÆ¶¯Ê±¼äΪtÃ룮
£¨1£©µ±t=2Ãëʱ£¬ÇómµÄÖµ£»
£¨2£©µ±tΪºÎֵʱ£¬OMÊÇ¡÷OPNµÄÖÐÏߣ¿
£¨3£©ÈôÖ±ÏßlÓëË«ÇúÏßy=$\frac{2}{x}$ÓÐÁ½¸ö¹«¹²µã£®Çë½áºÏͼÏóÖ¸³ötµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©¸ù¾ÝµãPµÄÔ˶¯¹æÂɼ´¿ÉÕÒ³öµãPµÄ×ø±ê£¬½áºÏÒ»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ÕÒ³ömÓëtÖ®¼äµÄ¹ØÏµ£¬ÔÙ´úÈët=2Çó³öµãmµÄÖµ£¬´ËÌâµÃ½â£»
£¨2£©¸ù¾ÝµãBµÄ×ø±ê¿ÉÕÒ³öÖ±ÏßMBµÄ½âÎöʽ£¬ÁªÁ¢Ö±ÏßlÓëÖ±ÏßMBµÄ½âÎöʽ³É·½³Ì×飬½â·½³Ì×éÇó³öµãMµÄ×ø±ê£¬ÔÙ¸ù¾ÝÖÐλÏßµÄÐÔÖʼ´¿ÉµÃ³ö¹ØÓÚtµÄÒ»ÔªÒ»´Î·½³Ì£¬½â·½³Ì¼´¿ÉµÃ³ötÖµ£»
£¨3£©½«Ö±ÏßlµÄ½âÎöʽ´úÈëË«ÇúÏßÖУ¬ÕûÀíµÃ³ö¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬¸ù¾ÝÁ½º¯ÊýͼÏóÓÐÁ½¸ö½»µã½áºÏ¸ùµÄÅбðʽ¼´¿ÉµÃ³ömµÄȡֵ·¶Î§£¬ÔÙÓÉm¡¢tÖ®¼äµÄ¹ØÏµ¼´¿ÉµÃ³ötµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºµãPµÄ×ø±êΪ£¨0£¬2+t£©£¬
½«µãP£¨0£¬2+t£©´úÈëy=-2x+mÖУ¬µÃ£º2+t=m£¬
µ±t=2ʱ£¬m=2+2=4£¬
¡àµ±t=2Ãëʱ£¬mµÄֵΪ4£®
£¨2£©¡ßB£¨a£¬4£©£¬
¡àÖ±ÏßMBµÄ½âÎöʽΪy=4£®
ÁªÁ¢Ö±ÏßlÓëÖ±ÏßMBµÄ½âÎöʽ³É·½³Ì×éµÃ£º$\left\{\begin{array}{l}{y=4}\\{y=-2x+m}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=\frac{m-4}{2}}\\{y=4}\end{array}\right.$£¬
¡àM£¨$\frac{m-4}{2}$£¬4£©£®
¡ßOMÊÇ¡÷OPNµÄÖÐÏߣ¬
¡àµãMÊÇÏß¶ÎPNµÄÖе㣬
¡à4¡Á2=0+2+t£¬
½âµÃ£ºt=6£®
¡àµ±t=6Ãëʱ£¬OMÊÇ¡÷OPNµÄÖÐÏߣ®
£¨3£©½«y=-2x+m´úÈëy=$\frac{2}{x}$ÖУ¬µÃ£º-2x+m=$\frac{2}{x}$£¬
¼´2x2-mx+2=0£®
¡ßÖ±ÏßlÓëË«ÇúÏßy=$\frac{2}{x}$ÓÐÁ½¸ö¹«¹²µã£¬
¡à¡÷=£¨-m£©2-4¡Á2¡Á2£¾0£¬
½âµÃ£ºm£¾4»òm£¼-4£¬
¡ßm=2+t£¬t¡Ý0£¬
¡à2+t£¾4£¬½âµÃ£ºt£¾2£®
¡àÈôÖ±ÏßlÓëË«ÇúÏßy=$\frac{2}{x}$ÓÐÁ½¸ö¹«¹²µã£¬tµÄȡֵ·¶Î§Îªt£¾2£®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢½â¶þÔªÒ»´Î·½³Ì×éÒÔ¼°¸ùµÄÅбðʽ£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÕÒ³ömÓëtÖ®¼äµÄ¹ØÏµ£»£¨2£©¸ù¾ÝÖеãµÄÐÔÖÊÕÒ³ö¹ØÓÚtµÄÒ»ÔªÒ»´Î·½³Ì£»£¨3£©ÓɸùµÄÅбðʽÕÒ³ömµÄȡֵ·¶Î§£®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬¸ù¾Ý¸ùµÄÅбðʽÕÒ³ö²»µÈʽÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®´óÊý¾Ýʱ´ú£¬¶ÔÊý¾Ý·ÖÎöµÄËÙ¶ÈÒªÇó¸ü¸ßÁË£¬Ä³ÖÖ¼ÆËã»úÍê³ÉÒ»´Î»ù±¾ÔËËãËùÓõÄʱ¼äԼΪ0.00000000102s£¬°Ñ0.00000000102ÓÿÆÑ§¼ÇÊý·¨¿É±íʾΪ£¨¡¡¡¡£©
A£®1.02¡Á10-9B£®0.102¡Á10-9C£®0.102¡Á10-10D£®1.02¡Á10-10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Å×ÎïÏßy=-$\frac{2}{3}$£¨x+2£©2µÄ¶¥µã×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨0£¬2£©B£®£¨-2£¬0£©C£®£¨0£¬2£©D£®£¨0£¬-2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬ÒÔRt¡÷ABCµÄÈý±ßΪб±ß·Ö±ðÏòÍâ×÷µÈÑüÖ±½ÇÈý½ÇÐΣ¬ÈôRt¡÷ABCµÄб±ßAB=6£¬ÔòͼÖеÄÒõÓ°²¿·ÖµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®6B£®9C£®18D£®36

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªÅ×ÎïÏßy=ax2+bx+3¾­¹ýµãA£¨-1£¬0£©£¬B£¨3£¬0£©Á½µã£¬ËüµÄ½âÎöʽΪ£¨¡¡¡¡£©
A£®y=-x2+2x+3B£®y=-x2+2x-3C£®y=x2+2x-3D£®y=x2+2x+3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Rt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬AC=3£¬BC=4£¬DÊÇб±ßABµÄÖе㣬E¡¢F·Ö±ðÊÇÖ±ÏßAC¡¢BCÉϵ͝µã£¬¡ÏEDF=90¡ã£¬ÔòÏß¶ÎEF³¤¶ÈµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®1.5B£®2C£®2.4D£®2.5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®½âÏÂÁв»µÈʽ£¨×飩£¬²¢ÔÚÊýÖáÉϱíʾ½â¼¯£º
£¨1£©$\frac{3x-2}{5}$¡Ý$\frac{2x+1}{3}$-1£»                      
£¨2£©$\left\{\begin{array}{l}{7£¨x-5£©+2£¨x+1£©£¾-15}\\{\frac{2x+1}{3}-\frac{3x-1}{2}£¼0}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ1£¬Æ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=ax2+bx+4¾­¹ýµãD£¨2£¬4£©£¬ÇÒÓëxÖá½»ÓÚA£¨3£¬0£©£¬BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬Á¬½ÓAC£¬CD£¬BC£®
£¨1£©¸ÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Èçͼ2£¬µãPÊÇËùÇóÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬¹ýµãP×÷xÖáµÄ´¹Ïßl£¬l·Ö±ð½»xÖáÓÚµãE£¬½»Ö±ÏßACÓÚµãM£¬ÉèµãPµÄºá×ø±êΪm£¬µ±0£¼m¡Ü2ʱ£¬¹ýµãM×÷MG¡ÎBC£¬MG½»xÖáÓÚµãG£¬Á¬½ÓGC£¬ÔòmΪºÎֵʱ£¬¡÷GMCµÄÃæ»ýÈ¡µÃ×î´óÖµ£¬²¢Çó³öÕâ¸ö×î´ó£®
£¨3£©Èçͼ3£¬Rt¡÷A1B1C1ÖУ¬¡ÏA1C1B1=90¡ã£¬A1C1=1£¬B1C1=2£¬Ö±½Ç±ßA1C1ÔÚxÖáÉÏ£¬ÇÒA1ÓëAÖØºÏ£¬µ±Rt¡÷A1B1C1ÑØxÖá´ÓÓÒÏò×óÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÒÆ¶¯Ê±£¬Éè¡÷A1B1C1Óë¡÷ABCÖØµþ²¿·ÖµÄÃæ»ýΪS£¬Çóµ±S=$\frac{4}{5}$ʱ£¬¡÷A1B1C1ÒÆ¶¯µÄʱ¼ät£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èô¶þ´Î¸ùʽ$\sqrt{2{m}^{2}+1}$»¯¼òºóµÄ½á¹ûµÈÓÚ3£¬ÔòmµÄÖµÊÇ¡À2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸