【题目】已知等边△ABC中,点E是直线BC上一点,∠ADB=75°.
(1) 如图1,∠DAE=30°,证明:BE=DC;
(2) 如图2,点E在BC延长线上,CA平分∠DAE,求值
【答案】(1)见详解;(2) .
【解析】
(1)证△ABE≌△ACD即可得到BE=DC;
(2)利用含30°角的直角三角形三边关系求出CE的值,再通过△ABD∽△EBA求出BE的值,即可求得答案.
解:(1)∵∠ADB=75°
∴∠ADC=180°-75°=105°
∵∠AED+∠DAE=∠ADC,∠DAE=30°
∴∠AED=105°-30°=75°
∴∠AEB=105°=∠ADC
∵△ABC为等边三角形
∴AB=AC,∠B=∠C
在△ABE和△ACD中,
∴△ABE≌△ACD
∴BE=DC
(2)如图,过点A作AM⊥BC于M,
∵△ABC为等边三角形,∠ADB=75°
∴∠DAC=75°-60°=15°,
∵CA平分∠DAE,
∴∠CAE=15°,∠E=60°-15°=45°,
∴△AEM为等腰直角三角形
设AB=BC=AC=2a,
∵AM⊥BC,
易得BM=MC=a,AM=a,EM=a,
∴CE=,BE=2a+a-a=a+a,
在△ABD与△EBA中,∠ADB=∠BAE=75°,∠B=∠B,
∴△ABD∽△EBA,
∴,
∴
∴BD=2a-2a,
∴
科目:初中数学 来源: 题型:
【题目】如图1,点P,Q分别是等边△ABC边AB,BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ,CP交于点M.
(1)求证:△ABQ△CAP;
(2)如图1,当点P,Q分别在AB,BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P,Q在分别运动到点B和点C后,继续在射线AB,BC上运动,直线AQ,CP交点为M,则∠QMC= 度.(直接填写度数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点坐标为,点坐标为,动点从点开始沿以每秒个单位长度的速度向点移动,动点从点开始沿以每秒个单位长度的速度向点移动.如果、分别从、同时出发,用(秒)表示移动的时间,那么:
当为何值时,四边形是梯形,此时梯形的面积是多少?
当为何值时,以点、、为顶点的三角形与相似?
若设四边形的面积为,试写出与的函数关系式,并求出取何值时,四边形的面积最小?
在轴上是否存在点,使点、在移动过程中,以、、、为顶点的四边形的面积是一个常数?若存在请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为美化校园,准备在长35米,宽20米的长方形场地上,修建若干条宽度相同的道路,余下部分作草坪,并请全校学生参与方案设计,现有3位同学各设计了一种方案,图纸分别如图l、图2和图3所示(阴影部分为草坪).
请你根据这一问题,在每种方案中都只列出方程不解.
①甲方案设计图纸为图l,设计草坪的总面积为600平方米.
②乙方案设计图纸为图2,设计草坪的总面积为600平方米.
③丙方案设计图纸为图3,设计草坪的总面积为540平方米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B是观察点,船A在B的正前方,过B作AB的垂线,在垂线上截取任意长BD,C是BD的中点,观察者从点D沿垂直于BD的DE方向走,直到点E、船A和点C在一条直线上,那么△ABC≌△EDC,从而量出DE的距离即为船离岸的距离AB,这里判定△ABC≌△EDC的方法是( )
A.SASB.ASAC.AASD.SSS
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明利用所学函数知识,对函数进行了如下研究.列表如下:
x | … | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | … |
y | … | 7 | 5 | 3 | m | 1 | n | 1 | 1 | 1 | … |
(1)自变量x的取值范围是________;
(2)表格中:m=_______;n=________;
(3)在给出的坐标系中画出函数的图象;
(4)一次函数的图象与函数的图象交点的坐标为_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系上,已知点A(8,4),AB⊥y轴于B,AC⊥x轴于C,直线y=x交AB于D.
(1)直接写出B、C、D三点坐标;
(2)若E为OD延长线上一动点,记点E横坐标为a,△BCE的面积为S,求S与a的关系式;
(3)当S=20时,过点E作EF⊥AB于F,G、H分别为AC、CB上动点,求FG+GH的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com