精英家教网 > 初中数学 > 题目详情
3.计算
(1)(3x-2)(2x+3)-(x-1)2
(2)(6x4-8x3)÷(-2x2)-(3x+2)(1-x)

分析 (1)利用多项式乘多项式的法则进行计算;
(2)利用整式的混合计算法则解答即可.

解答 解:(1)(3x-2)(2x+3)-(x-1)2
=6x2+9x-4x-6-x2+2x-1
=5x2+7x-7;
(2)(6x4-8x3)÷(-2x2)-(3x+2)(1-x)
=-3x2+4x-3x+3x2-2+2x
=3x-2.

点评 本题考查了整式的混合计算,关键是根据多项式乘多项式的法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6
(1)一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率
(2)随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)计算:$\sqrt{25}$-$\root{3}{-27}$+$\sqrt{\frac{1}{4}}$;     
(2)求式子中x的值:(x+2)3+8=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.在Rt△ABC中,∠ACB=90°,点D是斜边AB上的中点,AC=6cm,BC=4cm,一动点P从点A出发,沿A→C→B的路线以1cm/s的速度移动.设△APD的面积为y(cm2),则y关于点P的运动时间x(s)的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.反比例函数y=$\frac{k}{x}$的图象与直线y=-x-(k+1))相交与A、C两点,点A在第二象限,过A作AB⊥x轴于点B,且S△ABO=1.5.
(1)求A、C两点的坐标;
(2)求△AOC的面积;
(3)根据图象写出使一次函数值大于反比例函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.一个几何体由12个大小相同的小立方体搭成,从上面看到的这个几何体的形状图如图所示,若小正方形中的数字表示在该位置小立方块的个数,则从正面看,一共能看到8个小立方块(被遮挡的不计).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图所示几何体三视图的主视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)计算:(3x-y)2-(2x+y)2+5x(y-x)
(2)解方程:$\frac{x}{x-2}-1=\frac{8}{{x}^{2}-4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠BAC=80°.求∠AGD的度数.
请将求∠AGD度数的过程填写完整.
解:因为EF⊥BC,AD⊥BC,
所以∠BFE=90°,∠BDA=90°,理由是垂直的定义,
即∠BFE=∠BDA,所以EF∥AD,理由是同位角相等,两直线平行,
所以∠2=∠3,理由是两直线平行,同位角相等.
因为∠1=∠2,所以∠1=∠3,
所以AB∥DG,理由是内错角相等,两直线平行,
所以∠BAC+∠AGD=180°,理由是两直线平行,同旁内角互补.
又因为∠BAC=80°,所以∠AGD=100°.

查看答案和解析>>

同步练习册答案