精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.
(1)证明:△ACE∽△FBE;
(2)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.

【答案】
(1)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,

∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,

∴∠CAB+∠BAC′=∠C′AB′+∠BAC′,即∠CAC′=∠BAB′,

∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,

∴∠ACC′=∠ABB′,

又∵∠AEC=∠FEB,

∴△ACE∽△FBE


(2)解:当β=2α时,△ACE≌△FBE.

在△ACC′中,

∵AC=AC′,

∴∠ACC′= = =90°﹣α,

在Rt△ABC中,

∠ACC′+∠BCE=90°,即90°﹣α+∠BCE=90°,

∴∠BCE=α,

∵∠ABC=α,

∴∠ABC=∠BCE,

∴CE=BE,

由(1)知:△ACE∽△FBE,

∴∠BEF=∠CEA,∠FBE=∠ACE,

又∵CE=BE,

∴△ACE≌△FBE


【解析】(1)欲证△ACE∽△FBE,通过观察发现两个三角形已经具备一组角对应相等,即∠AEC=∠FEB,此时,再证∠AC′C=∠ABB′即可.(2)欲证△ACE≌△FBE,由(1)知△ACE∽△FBE,只需证明CE=BE,由已知可证∠ABC=∠BCE=α,即证β=2α时,△ACE≌△FBE.
【考点精析】解答此题的关键在于理解相似三角形的判定的相关知识,掌握相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS),以及对旋转的性质的理解,了解①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,CEABAB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DCCF至点GH,使FH=CG,连接AGDH交于点P

(1)依题意补全图1;

(2)猜想AGDH的数量关系并证明;

(3)若∠DAB=70°,是否存在点G,使得ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的运算流程中,

(1)若输入的数x=﹣4,则输出的数y=   

(2)若输出的数y=5,则输入的数x=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(
A.①②
B.②③
C.①③
D.①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第35秒时,点E在量角器上对应的读数是度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是(
A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分别为E,F.

(1)求证:ABE≌△CDF;

(2)若AC与BD交于点O,求证:AO=CO.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:像两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式例如,等都是互为有理化因式在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.

例如;

解答下列问题:

(1)________互为有理化因式,将分母有理化得________;

(2)计算:

(3)己知有理数a、b满足,求a、b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学完“有理数的运算”后,某中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛,竞赛规则是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分

(1)如果2班代表队最后得分142分,那么2班代表队回答对了多少道题?

(2)1班代表队的最后得分能为145分吗?请简要说明理由.

查看答案和解析>>

同步练习册答案