【题目】如图,M、N是平行四边形ABCD对角线BD上两点.
(1)若BM=MN=DN,求证:四边形AMCN为平行四边形;
(2)若M、N为对角线BD上的动点(均可与端点重合),设BD=12cm,点M由点B向点D匀速运动,速度为2(cm/s),同时点N由点D向点B匀速运动,速度为 a(cm/s),运动时间为t(s).若要使四边形AMCN为平行四边形,求a的值及t的取值范围.
【答案】(1)证明见解析;(2)a=2,0≤t≤6且t≠3.
【解析】
试题(1)根据题意易证△AND≌△CMB.所以AN=CM,∠AND=∠CMB.所以∠ANM=∠CMN,即AN∥CM.因此,四边形AMCN为平行四边形;
(2)连接AC,交BD于O,要使四边形AMCN为平行四边形,即OM=ON,列出方程与不等式即可求解.
试题解析:(1)∵四边形ABCD是平行四边形
∴AD=CB,AD∥BC
∴∠ADB=∠CBD
又∵BM=DN
∴△AND≌△CBM
∴CM=AN,∠BMC=∠DNA
∴∠CMN=∠ANM
∴CM∥AN
∴四边形AMCN为平行四边形;
(2)如图,连接AC,交BD于O,要使四边形AMCN为平行四边形,即OM=ON,
∴6-2t=6-at
∴a=2
当M、M重合于点O,即t=3时,点A、M、C、N在同一直线上,不能组成四边形,
∴0≤t≤6且t≠3.
科目:初中数学 来源: 题型:
【题目】如图,在中,,点为边上的动点,点从点出发,沿边向点运动,当运动到点时停止,若设点运动的时间为秒,点运动的速度为每秒2个单位长度.
(1)当时,= ,= ;
(2)求当为何值时,是直角三角形,说明理由;
(3)求当为何值时,,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展以感恩教育为主题的艺术活动,举办了四个项目的比赛,它们分别是演讲、唱歌、书法、绘画。要求每位同学必须参加,且限报一项活动。以九年级(1)班为样本进行统计,并将统计结果绘成如图1、图2所示的两幅统计图。请你结合图示所给出的信息解答下列问题。
(1)求出参加绘画比赛的学生人数占全班总人数的百分比?
(2)求出扇形统计图中参加书法比赛的学生所在扇形圆心角的度数?
(3)若该校九年级学生有600人,请你估计这次艺术活动中,参加演讲和唱歌的学生各有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,地面上小山的两侧有,两地,为了测量,两地的距离,让一热气球从小山西侧地出发沿与成角的方向,以每分钟的速度直线飞行,分钟后到达处,此时热气球上的人测得与成角,请你用测得的数据求,两地的距离长.(结果用含非特殊角的三角函数和根式表示即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.
(1)求抛物线的解析式及点D的坐标;
(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(3)若点P是x轴上方抛物线上的动点,以PB为边作正方形PBFG,随着点P的运动,正方形的大小、位置也随着改变,当顶点F或G恰好落在y轴上时,请直接写出点P的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB的高,他们来到与建筑物AB在同一平地且相距12米的建筑物CD上的C处观察,测得某建筑物顶部A的仰角为30°、底部B的俯角为45°.求建筑物AB的高(精确到1米).(可供选用的数据:≈1.4,≈1.7).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。
[来
根据以上信息,解答下列问题:
(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com