【题目】如图,在平面直角坐标系xOy中,△ABC的位置如图所示.
(1)分别写出△ABC各个顶点的坐标;
(2)判断△ABC的形状;
(3)请在图中画出△ABC关于y轴对称的图形△A'B'C'.
科目:初中数学 来源: 题型:
【题目】已知,如图1:△ABC中,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F
(1)直接写出图1中所有的等腰三角形.指出EF与BE、CF间有怎样的数量关系?
(2)在(1)的条件下,若AB=15,AC=10,求△AEF的周长;
(3)如图2,若△ABC中,∠B的平分线与三角形外角∠ACG的平分线CO交于点O,过O点作OE∥BC交AB于E,交AC于F,请问(1)中EF与BE、CF间的关系还是否存在,若存在,说明理由:若不存在,写出三者新的数量关系,并说明理由;
(4)如图3,∠ABC、∠ACB的外角平分线的延长线相交于点O,请直接写出EF,BE,CF,MN之间的数量关系.不需证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资万元用于该产品的广告促销,已知该产品的本地销售量(万台)与本地的广告费用(万元)之间的函数关系满足.该产品的外地销售量(万台)与外地广告费用(万元)之间的函数关系可用如图所示的抛物线和线段来表示.
其中点为抛物线的顶点.
结合图象,求出(万台)与外地广告费用(万元)之间的函数关系式;
求该产品的销售总量(万台)与本地广告费用(万元)之间的函数关系式;
如何安排广告费用才能使销售总量最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=40°,分别以AB,AC为边作两个等腰三角形ABD和ACE,且AB=AD,AC=AE,∠BAD=∠CAE=90°.
(1)求∠DBC的度数.
(2)求证:BD=CE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司在北部湾经济区农业示范基地采购A,B两种农产品,已知A种农产品每千克的进价比B种多2元,且用24000元购买A种农产品的数量(按重量计)与用18000元购买B种农产品的数量(按重量计)相同.
(1)求A,B两种农产品每千克的进价分别是多少元?
(2)该公司计划购进A,B两种农产品共40吨,并运往异地销售,运费为500元/吨,已知A种农产品售价为15元/kg,B种农产品售价为12元/kg,其中A种农产品至少购进15吨且不超过B种农产品的数量,问该公司应如何采购才能获得最大利润,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(题文)如图,在平面直角坐标系中,直线y=﹣x+2与坐标轴分别交于A,B两点,过点B作BD∥x轴,抛物线y=﹣x2+bx+c经过B,D两点,且对称轴为x=2,设x轴上一动点P(n,0),过点P分别作直线BD,AB的垂线,垂足分别为M,N.
(1)求抛物线的解析式及顶点C的坐标;
(2)设四边形ABCD的面积为S四边形ABCD,当n为何值时,=;
(3)是否存在点P(n,0),使得△PMN为等腰三角形?若存在,请求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高.得到下面四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④ AE2+DF2=AF2+DE2.上述结论中正确的是( )
A. ②③ B. ②④ C. ①②③ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC是等边三角形.
(1)如图,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.试判断BF与CF的数量关系,并加以证明;
(2)点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.若△BFD是等腰三角形,求∠FBD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,点D、E在x轴上,CF交y轴于点B(0,2),且矩形其面积为8,此抛物线的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com