【题目】如图,已知二次函数y=ax2+2ax+c(a>0)的图象交x轴于A、B两点,交y轴于点C.过点B的直线l与这个二次函数的图象的另一个交点为D,与该图象的对称轴交于点E,与y轴交于点F,且DE:EF:FB=1:1:2.
(1)求证:点F为OC的中点;
(2)连接OE,若△OBE的面积为2,求这个二次函数的关系式;
(3)设这个二次函数的图象的顶点为P,问:以DF为直径的圆是否可能恰好经过点P?若可能,请求出此时二次函数的关系式;若不可能,请说明理由.
【答案】(1)见解析;(2);(3)以DF为直径的圆能够恰好经过点P,
【解析】
(1)首先得出对称轴,再表示出D,C点坐标,再利用全等三角形的判定方法得出△DCF≌△BOF,进而求出答案;
(2)首先得出F点坐标,进而利用待定系数法求出直线BC的解析式,进而得出答案;
(3)由(1)可得F(0, ),E(﹣1, ),再利用EP=DE,进而得出关于a,c的等式,进而求出答案.
(1)如图1,过点D作DM∥FO,
∵y=ax2+2ax+c=a(x+1)2+c﹣a,
∴它的对称轴为x=﹣1,
∵DE:EF:FB=1:1:2,且DM∥NE∥OF,
∴B(2,0),且D点的横坐标为﹣2,
由此可得D(﹣2,c),
∵点C(0,c),
∴D、C关于x=﹣1对称,
故∠DCF=90°,
在△DCF和△BOF中
∴△DCF≌△BOF,
∴OF=CF,
即点F为CO的中点.
(2)∵△OBE的面积为2,B(2,0),
∴E(﹣1,﹣2),
∵OF∥NE,
∴△BOF∽△BNE,
∴
∴
解得:FO= ,
由此可得F(0,﹣ ),C(0,﹣ ),
把B(2,0),C(0,﹣)代入y=ax2+2ax+c得
解得:
∴抛物线解析式为:
(3)以DF为直径的圆能够恰好经过点P,
由(1)可得F(0, ),E(﹣1, ),D(﹣2,c),
∴
要使以DF为直径的圆恰好经过点P,有EP=
∵E(﹣1,),P(﹣1,c﹣a),
∴EP=
∴
另一方面,由B(2,0)可得8a+c=0,即c=﹣8a,
把它代入上式可得a= ,
∴
科目:初中数学 来源: 题型:
【题目】如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,其中正确的结论的个数是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一座古塔AH的高为33米,AH⊥直线l,某校九年级数学兴趣小组为了测得该古塔塔刹AB的高,在直线l上选取了点D,在D处测得点A的仰角为26.6°,测得点B的仰角为22.8°,求该古塔塔刹AB的高.(精确到0.1米)(参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.5,sin22.8°=0.39,cos22.8°=092,tan22.8°=0.42)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商场进了一批家用空气净化器,成本为1200元/台.经调查发现,这种空气净化器每周的销售量y(台)与售价x(元/台)之间的关系如图所示:
(1)请写出这种空气净化器每周的销售量y与 售价x的函数关系式(不写自变量的范围);
(2)若空气净化器每周的销售利润为W(元),则当售价为多少时,可获得最大利润,此时的最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图直线a,b都与直线m垂直,垂足分别为M、N,MN=1,等腰直角△ABC的斜边,AB在直线m上,AB=2,且点B位于点M处,将等腰直角△ABC沿直线m向右平移,直到点A与点N重合为止,记点B平移平移的距离为x,等腰直角△ABC的边位于直线a,b之间部分的长度和为y,则y关于x的函数图象大致为( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】第十二届校园艺术节正在如火如荼的进行,我校九年级组织1500名学生参加了一次“湘一情校园知识”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:
90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,97,100,73,76,80,77,81,86,89,82,85,71,68,74,98,90,97,100,84,87,73,65,92,96,60.
对上述成绩进行了整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
60≤x<70 | 6 | 0.15 |
70≤x<80 | 8 | 0.2 |
80≤x<90 | a | b |
90≤x≤100 | c | d |
请根据所给信息,解答下列问题:
(1)a= ,b= ,c= ,d= ;
(2)请补全频数分布直方图;
(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的1500名学生中成绩“优”等的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为点D,直线AC交⊙C于点E、F,且CF=AC,
(1)求证:△ABF是直角三角形.
(2)若AC=6,则直接回答BF的长是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子中装有除颜色外其余均相同的5个小球,其中红球3个(记为A1,A2,A3),黑球2个(记为B1,B2).
(1)若先从袋中取出m(m>0)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,填空:①若A为必然事件,则m的值为 ②若A为随机事件,则m的取值为
(2)若从袋中随机摸出2个球,正好红球、黑球各1个,用树状图或列表法求这个事件的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com