精英家教网 > 初中数学 > 题目详情

【题目】计算下列各题
(1)(3﹣π)0+4sin45°﹣ +|1﹣ |
(2)解分式方程: ﹣2=

【答案】
(1)解:原式=1+2 ﹣2 + ﹣1=
(2)解:去分母得:x﹣2x+6=4,

解得:x=2,

经检验:x=2是原分式方程的根.


【解析】(1)原式利用零指数幂法则,特殊角的三角函数值,二次根式性质,以及绝对值的代数意义计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【考点精析】本题主要考查了零指数幂法则和去分母法的相关知识点,需要掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);先约后乘公分母,整式方程转化出.特殊情况可换元,去掉分母是出路.求得解后要验根,原留增舍别含糊才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小红认为:当b2﹣4ac≥0时,一元二次方程ax2+bx+c=0(a≠0)的求根公式是 .请你举出反例说明小红的结论是错误的.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.
(1)求证:AC是⊙O的切线;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直径为AB的⊙O交Rt△BCD的两条直角边BC、CD于点E、F,且 ,连接BF.

(1)求证:CD为⊙O的切线;
(2)当CF=1且∠D=30°时,求AD长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(x,|x﹣y|),则称点Q为点P的“关联点”.
(1)请直接写出点(2,2)的“关联点”的坐标;
(2)如果点P在函数y=x﹣1的图像上,其“关联点”Q与点P重合,求点P的坐标;
(3)如果点M(m,n)的“关联点”N在函数y=x2的图像上,当0≤m≤2时,求线段MN的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.
(1)求证:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.
(1)求证:PB是⊙O的切线.
(2)若OP∥BC,且OP=8,∠C=60°,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某食品批发部准备用10000元从厂家购进一批出厂价分别为16元和20元的甲、乙两种酸奶,然后将甲、乙两种酸奶分别加价20%和25%向外销售.如果设购进甲种酸奶为x(箱),全部售出这批酸奶所获销售利润为y(元).
(1)求所获销售利润y(元)与x(箱)之间的函数关系式;
(2)根据市场调查,甲、乙两种酸奶在保质期内销售量都不超过300箱,那么食品批发部怎样进货获利最大,最大销售利润是多少?

查看答案和解析>>

同步练习册答案